
CS 255 (Stanford, taught by Professor Dan Boneh) Aditi Talati Winter 2022

Class Notes

These are notes taken from the lectures for CS 255: Introduction to Cryptography. They are mostly taken
from the lecture recordings for the class, and I try to update them within a day of each lecture, though rel-
evant drawings and diagrams might be added later. All diagrams are either drawn by me or are screenshots
from the lecture recording or relevant slide deck. If you find any typos, errors, or confusingly worded section
of the notes, please let me know! You can contact me at atalati [at] stanford.edu.

Table of Contents

Lecture 1: Perfect Secrecy and the One-Time Pad page 2

Lecture 2: Pseudo-Random Generators and Stream Ciphers page 5

Lecture 3: Block Ciphers page 8

Lecture 4: Pseudorandom Functions page 10

Lecture 5: Data Integrity and MACs page 15

Lecture 6: Collision Resistance page 19

Lecture 7: Authenticated Encryption page 22

Lecture 8: Intro To Public-Key Cryptography page 25

Lecture 9: Cryptography Using Finite Cyclic Groups page 29

Lecture 10: Public-Key Encryption Schemes page 33

Lecture 11: RSA Encryption page 39

Lecture 12: RSA Encryption and Digital Signatures page 44

Lecture 13: Certificates page 50

Lecture 14: Identification Protocols page 54

Lecture 15: Authenticated Key Exchange page 61

Lecture 16: Zero-Knowledge Protocols page 73

Lecture 17: Zero Knowledge-Based Signature Schemes page 78

1



CS 255 (Stanford, taught by Professor Dan Boneh) Aditi Talati Winter 2022

Lecture 1: Perfect Secrecy and the One-Time Pad

What is this course about?

• the use of cryptography

• cryptography is everywhere!

Goal: to learn how cryptography works and how to use it correctly

Two Steps for protocols like SSH and TLS:

1. session-setup: public-key cryptography (ex. Elbamal, RSA) and certificate

2. use shared key to encrypt traffic (using a symmetric cipher) for privacy and data integrity

The beginning of the course will be part 2, the next part of the course will be session setup, and the last
part will be some advanced forms of cryptography.

Thing to Remember: in cryptography, no security by obscurity

A cryptographic system should be secure even when the entire code is open source - the only secret we are
allowed to have is a short secret key. (on the scale of 16 bytes)

Course Organization:

1. using a shared key for confidentiality and data integrity

2. session setup using public key encryption and digital signatures

3. protocols: session setup, zero knowledge proofs, etc.

If you want to read about the history of cryptography, read the famous book The Codebreakers by David
Kahn.

Shared Cipher: Alice and Bob are trying to communicate. They both have a shared (secret) key K. Alice
has a (public) encryption algorithm E and Bob has a (public) decryption algorithm D such that for any
message m, Alice can generate a ciphertext c by computing E(K,m). She sends the ciphertext to Bob, and
Bob generates the message m by computing D(K, c).
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Definition 1. A cipher defined over (K,M, C) (keyspace, message space, ciphertext space) is a pair of
“efficient” algorithms (E,D):

E : K ×M → C, D : K × C → M

such that for every message m ∈ M and every key K ∈ K,

D(K,E(K,m)) = m.

Note: the encryption algorithm can be randomized (the same message, encrypted twice, can produce differ-
ent ciphertexts) but the decryption algorithm must be deterministic

Example 2. The oldest cipher is a substitution cipher, where the key is a certain permutation of the
letters of the alphabet, and the encryption algorithm maps each letter to its position in the permutation.

e.g. For key k = zmbfg ... ha, our encryption function E(k,m) would take the message string, and
replace a with z, b with m, and so on, and our decryption function D(k, c) would take the ciphertext,
and replace z with a, m with b, and so on.

The Caeser cipher was a “shift by 3” but this was not secure because there is no key. Any shift is insecure,
because the keyspace K has size 26, so it is trivial to try all keys until we reveal the message.

To break the substitution cipher:

1. use the frequency of English letters

2. use the frequency of digrams (pairs of letters)

3. use the frequency of trigrams

4. and so on ...

This is a ciphertext-only attack because we have no information other than the ciphertext, and we are
still able to reveal the message.

Definition 3. The one-time pad (invented by Vernam, 1917 or possibly by a banker in Oakland 50
years before) is essentially a substitution cipher where the permutation changes every bit:

M = C = {0, 1}n , K = {0, 1}n

so the secret key is a random bit string as long as the message.

Our encryption algorithm is
c = E(K,m) = K ⊕m

and our decryption algorithm is
m = D(K, c) = K ⊕ c.

This is a very fast encryption algorithm, but the problem with the one-time pad is the key is as long as the
message. (If Alice can send a length-n string to Bob securely, she might as well just send the message.)

What is a secure cipher?

Definition 4 (Shannon, 1949). The idea of information-theoretic security is the ciphertext should
reveal no information about the plaintext message.

A cipher (E,D) over (K,M, C) has perfect secrecy if for all m0,m1 ∈ M such that m0 and m1 are
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both the same length, and for all c ∈ C,

Pr[E(K,m0) = c] = Pr[E(K,m1) = c],

where K is selected uniformly at random from K.

In words, if an attacker receives c, the attacker cannot tell whether it came from m0 or m1 (for all
c,m0,m1).

This implies a ciphertext-only attack is impossible, because the ciphertext could have come from any message
(of a given length).

Theorem 5. The one-time pad has perfect secrecy.

Proof. For any m ∈ M, c ∈ C, the probability E(K,m) = c is just the number of keys that map m to c,
divided by the total number of keys. We know that the keyspace is {0, 1}n, so the number of possible keys
is 2n. Moreover, the key maps m to c means K ⊕m = c, which means K = m ⊕ c; there is only one such
key. Thus, for all m, c,

Pr[E(K,m) = c] =
1

2n
.

Since this is the same for all m and all c, this means the one-time pad has perfect secrecy.

Theorem 6 (Bad News Theorem). Every cipher that has perfect secrecy must have |K| = |M|.

Proof. (Proof is left as an exercise; hint is that for a fixed c ∈ C, for every m ∈ M, there must be at least
one key K ∈ K such that E(K,m) = c)
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Lecture 2: Pseudo-Random Generators and Stream Ciphers

Definition 7. A pseudo-random generator is a functionG : {0, 1}s → {0, 1}n, where s is significantly
smaller than n, which is “efficiently” computable by a deterministic algorithm.

Definition 8. A stream cipher makes the one-time pad practical by replacing a random key by a
“pseudorandom” key.

The stream cipher (E,D) is defined over C = M = {0, 1}n and K = {0, 1}s, where

E(K,m) = m⊕G(K)

and
D(K, c) = c⊕G(K).

Since |K| << |M|, the stream cipher is not perfectly secure. Thus, we need a new definition of security,
which will depend on the pseudo-random generator.

Specifically, we will see that the pseudo-random generator must be unpredictable.

Definition 9. A pseudo-random generator G(K) is unpredictable if no efficient algorithm A can
compute the ith bit of G(K) if they just know the first i bits of G(K) (and not they key).
More precisely: For all efficient algorithms A, we want the value∣∣∣∣Pr [A (

G(K)[0, . . . , i− 1]
)
= G(K)[i]

]
− 1

2

∣∣∣∣
to be negligible; the adversary shouldn’t do much better than guessing at random.

(In practical terms, we can consider “negligible” to be at most 2−80.)

A predictable key implies that the stream cipher is insecure (knowing part of the message means that we
can reveal part of the key, and then we can use this to reveal the rest of the key by predicting the rest ofG(K)).

Weak Generators (do not use for crypto):

• glibc rand()

• Java Math.random()

• Microsoft VisualBasic RND()

These are useful for generating randomness in statistical algorithms or physics simulators, but they are com-
pletely predictable. Instead, use cryptographic libraries such as OpenSSL, and properly seed the random
generator.

Definition 10. A pseudo-random generator G : S → R is secure if for all efficient adversaries A, its
advantage

Adv(A, G) =
∣∣Pr[A(G(K)) = 1]− Pr[A(r) = 1]

∣∣
is negligible, where K is selected uniformly at random from S, r is selected uniformly at random from
R, and A(x) is any efficient function of strings in R.
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(Intuitively, we are looking at adversaries that are trying to distinguish the output of G from a randomly
selected string, such as one that outputs 1 only if it thinks the string was generated truly at random.)

Thus, if G is secure, we can treat G(K) as if it was selected uniformly at random from R.

Lemma 11. If the pseudo-random generator is secure, that implies it is unpredictable.

Proof. The proof is left as an exercise, but the idea is that if a pseudo-random generator is predictable, we
can construct an adversary that tries to predict part of the string from a prefix, and outputs 1 only if it does
not succeed.

(The converse of this is also true, but proving it is beyond the scope of this class.)

A pseudo-random generator being secure implies that the derived stream cipher is secure.

Definition 12. Two distributions P1 and P2 are indistinguishable if for all efficient adversaries A, its
advantage

Adv(A, P1, P2) =
∣∣Pr[A(p1) = 1]− Pr[A(p2) = 1]

∣∣
is negligible, where p1 is randomly sampled from P1, p2 is randomly sampled from P2, and A(x) is any
efficient function of strings in R.

Real-World Pseudo-Random Generators

1. RC4:
This is now broken, but is used in 802.11b WEP. It’s broken because the first 256 bytes of output are
biased, so after large samples statistical analysis can be used to reveal the message.

2. ChaCha20:
This is very good and is designed to be very fast on 64-bit processors. Works as follows:

so that the input key is 256 bits and the output is 264 × 32 bytes.

3. CSS pseudo-random generator:
This was used for DVD encryption and is broken (will be an example on a homework problem).

Attack on One-Time Pad and Stream Ciphers:

Two-Time Pad
If the same key is used for two messages:

c1 = m1 ⊕K

c2 = m2 ⊕K,
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then we can see that c1 ⊕ c2 = m1 ⊕m2, and written text has enough patterns in it that this is enough to
recover m1 and m2.

For a historical example, see Project Venona, which was a project to break encrypted ciphertexts in the Cold
War when secret keys were being reused for the one-time pads in encrypted messages.

A stream cipher key should only be used once!

No Integrity
If an adversary can intercept a message, it can xor the ciphertext with whatever changes it wants to make,
and the receiver won’t know the difference.

Note that this can be done without the adversary knowing the actual message, if, for example, they know
where the “from” location in an email message is.
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Lecture 3: Block Ciphers

Modern Stream Ciphers have a way of allowing you to use the same key more than once, using a concept
called the nonce. Specifically, the pseudo-random generator is a function of both the key and a short nonce,
where the nonce is a public value. Then, the stream cipher is secure as long as no key, nonce pair is repeated
(rather than when no key is repeated). This is surprising because by adding a changing known value to the
function, the key is not compromised even when using the same key multiple times.

A Short Aside: How do we generate the key for the pseudo-random generator?
(a.k.a. how to generate crypto-randomness on a computer) Every crypto-random generator has two functions:

• add entropy(rand): called by the OS whenever there is new randomness to be added - ex. could add
the current timestamp whenever a keyboard interrupt occurs

• get random(): called by the developer to obtain a random string

Every time add entropy is called, the new entropy is xored with the previous state, until the state of the
pseudo-random generator is close enough to uniformly random. This means that get random will not return
a properly random value until enough entropy has been added to the state. Moreover, since entropy keeps
being added, if an attacker obtains the state of the crypto-random generator at one point, this will no longer
reveal information about the generator once more entropy has been added.

Block Ciphers

Definition 13. A block cipher is a pair of efficient algorithms (E,D) defined over (K,X ) such that
E and D both map n-bit strings to n-bit strings. Moreover, for every key K ∈ K and every x ∈ X ,
D(K,E(K,x)) = x.

Two current examples of block ciphers:

• 3DES: n=64-bit blocks, key size=168 bits

• AES: n=128 bit blocks, key size=128, 192, or 256 bits

A secure block cipher will be formally defined next lecture, but it means E(K,x) should look like a truly
random one-to-one function from X to X .

Advanced Encryption Standard (AES) (invented in 2000)

The AES Pledge: I promise that once I see how simple AES is, I will not implement it in production code
even though it will be really fun. This pledge will remain in effect until I learn all about side-channel
attacks and countermeasures to the point where I lose all interest in implementing AES myself.

Most block ciphers are built by iteration:
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The function R is a deterministic function such that R−1 is easy to compute, so it is decrypted by computing
R−1 of the ciphertext on each of the keys in reverse order.

Number of Rounds Needed to Make Each Cipher Secure:

• 3DES: d = 48 rounds

• AES128: d = 10 rounds

• AES192: d = 12 rounds

• AES256 d = 14 rounds

Abstract AES: This is a type of iterated Evan-Mansour cipher.

We have a permutation function π : {0, 1}n → {0, 1}n which is fixed and publicly known. Then our encryption
algorithm E(K,x) works as follows: First, perform the key-expansion to generate K1, . . . ,Kd ∈ {0, 1}n.
Then, apply the permutation and xor with the keys as follows:

with the minor detail that the π in the last round is slightly different from the first d − 1 rounds, just for
convenience.

This is a vague statement of a theorem that is beyond the scope of the class, but provides some motivation
for the iterated Evan-Mansour cipher:

“Theorem” 14. If π is a random one-to-one function, then E(K,x) “looks like” a random one-to-one
function on X , provided n and d are sufficiently large.
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Lecture 4: Pseudorandom Functions

Definition 15. A pseudo-random function (PRF) defined over (K,X ,Y) is a function

F : K ×X → Y

such that there exists an efficient algorithm to evaluate F (K,x).

Definition 16. A pseudo-random permutation (PRP) defined over (K,X ) is a function

E : K ×X → X

such that:

• there exists an efficient algorithm to evaluate E(K,x)

• the map E(K, ·) is one-to-one

• there exists an efficient inversion algorithm D(K,x)

(This means the same thing as a block cipher, so we will use the terms interchangeably.)

Any pseudo-random permutation is also a pseudo-random function (a specific type of pseudo-random function
that is also one-to-one and invertible).

Definition 17. A pseudo-random function is secure if a random function in Funs[X,Y ] (the set of all
functions from X to Y ) is indistinguishable from a random function in the set

{
F (K, ·) where K ∈ K

}
.

Thus, we define the following experiment to determine whether a pseudo-random function is secure:
The challenger is running either experiment 0, where it has selected a key K randomly from K and will
pass each query into the function f(x) = F (K,x), or it is running experiment 1, where it has selected
a random function from Funs[X,Y ] and will pass each query into f(x) where f(x) is this random function.

Then, the adversary can query the challenger as many times as it likes, sending the challenger some xi

and receiving f(xi). Once it is done querying the challenger, it outputs either 0 or 1 depending on which
experiment the adversary thinks it is in.

Let EXP(b) be the output the adversary produces in experiment b. Then, a pseudo-random function is
secure if for all efficient adversaries A (note that being efficient puts an upper bound on the number of
queries an adversary can ask),

AdvPRF(A, F ) =
∣∣Pr[EXP(0) = 1]− Pr[EXP(1) = 1]

∣∣
is negligible.
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Example 18. The pseudo-random function F : K × {0, 1}n → {0, 1}n defined by F (K,x) = K ⊕ x
is insecure; we can construct an adversary that passes x0 ̸= x1 to the challenger and outputs 0 if
f(x0) ⊕ f(x1) = x0 ⊕ x1 and 1 otherwise. We can compute the advantage of this to see that adversary
gets advantage 1− 1/2n; this is close to one and therefore not negligible.

The definition for secure pseudo-random permutation is the same except the adversary is trying to
distinguish between E(K, ·) and a random function chosen from Perms[X] (the set of one-to-one functions
from X to itself).

Example 19. Ciphers such as 3DES and AES are examples of secure permutations; we believe that no
adversary that runs in time less than 280 can get advantage more than 2−40 on AES.

Lemma 20. Let E be a pseudo-random permutation over (K,X ). Then, for any q-query adversary A,∣∣AdvPRP(A, E)−AdvPRF(A, E)
∣∣ < q2/2|X | .

Thus, for large enough X , a secure pseudo-random permutation is also a secure pseudo-random function.

Building a Secure Encryption using PRP and PRF

Security is defined using two questions:

• What power does the adversary have? (only asking one query, asking multiple queries, etc)

• What is the adversary trying to do? (fully decrypt a ciphertext, learn information about the plaintext,
etc)

Incorrect Use of a PRP:

You might intuitively think to break a long message into blocks, and then encrypt each block using the
pseudo-random permutation to get a string of resulting ciphertexts. This is called the Electronic Code Book
(ECB) method. But this is a bad idea because it reveals a lot of information about the plaintext - any two
blocks that are identical will have the same resulting ciphertext.

(this picture was marked as courtesy B. Preneel in the slides)

Definition 21. We say that a cipher with a one-time key is semantically secure if the ciphertext does
not reveal any information about the plaintext after a single query.

Specifically, we define the adversarial game as follows: the adversary sends the challenger two messages,
m0 and m1, of equal length. The challenger picks at random whether they want to encrypt m0 or m1

and sends to the adversary either E(K,m0) or E(K,m1). Then, the adversary guesses which message
was encrypted.

Let Wb be the output the adversary produces in experiment b. Then, a cipher is semantically secure
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if for all efficient adversaries A,

AdvSS(A, E) =
∣∣Pr[W0 = 1]− Pr[W1 = 1]

∣∣
is negligible.

Example 22. If we have an efficient adversary A that can learn the least significant bit of the plaintext
from the ciphertext, then E is not semantically secure.

In the game, the adversary picks m0 and m1 such that |m0| = |m1| and the least significant bit of m0 is
0 but the least significant bit of m1 is 1. Then, if it passes m0 and m1 to the challenger, and receives
the ciphertext c, then the adversary figures out what the least siginficant bit of the plaintext was. If it
was 0, it outputs 0, otherwise it outputs 1. This gives the adversary an advantage of 1.

Clearly, the one-time pad is semantically secure. We will look at some ways of generating semantically secure
ciphers from a pseudo-random function.

Theorem 23. For any L > 0 and any secure pseudo-random function F : K × X → X , EDETCTR is a
semantically secure cipher from K ×XL to XL.

Proof. Specifically, we can show that for any adversary A attacking EDETCTR, there is an adversary B at-
tacking F with exactly half the advantage. Then, since the maximum advantage Adv[B, F ] is negligible, the
maximum advantage Adv[A, EDETCTR] must also be negligible.

(Refer to the textbook for the construction of B)
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Definition 24. A cipher is CPA secure (or secure against chosen-plaintext attack) if the ciphertext
does not reveal information about the plaintext even after many queries using the same key.

Thus, we define the following game to determine whether a cipher is CPA secure:
The challenger first selects either b = 0 or b = 1 and selects a key K at random.

Then, the adversary can query the challenger as many times as it likes, where each query is of the form of
the adversary sending the challenger some pair of messages of the same length, m0 and m1, and receiving
E(K,mb). Once it is done querying the challenger, it outputs either 0 or 1 depending on which message
it thinks the adversary is encrypting.

Let Wb be the output the adversary produces when the challenger selects b. Then, a cipher is CPA
secure if for all efficient adversaries A (note that being efficient puts an upper bound on the number of
queries an adversary can ask),

AdvCPA(A, E) =
∣∣Pr[W0 = 1]− Pr[W1 = 1]

∣∣
is negligible.

Note that if E(K,m) always produces the same c for the same m, then it is not secure: the adversary can
first pass in m0,m0 to get c0 = E(K,m0) and then pass in m0,m1 to get cb = E(K,mb) and then check
whether cb = c0.

We fix this by adding a nonce to the encryptor - this is a value that changes from message to message, so
that E(K,m, n) changes each time because the pair (K,n) never repeats.

Two common nonces are either a nonce chosen randomly from the nonce space, or a counter that increases
at each message sent.

One way of using the nonce is cipher block chaining, which works as follows (where IV is the nonce):
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However, this requires a random IV (there is a homework problem on showing that if the nonce is predictable
this is not secure) and because it is a sequential process, we can’t use parallelization to speed it up.

To fix the first problem, we can take a known (unique) nonce and pass it through E to get a pseudorandom
nonce, as follows:

A side note: we may need to pad the last message to fill the final block. IN TLS 1, they did this by padding
with “nnnn...n” where n+ 1 was the number of bytes in the pad, so the decryptor could read the last byte
and know how many bytes of padding to remove. If the message is a multiple of the block size, we need to
add a dummy block so that the decryptor doesn’t think the end of the message is part of the pad.

Instead of cipher block chaining (which is not that good and mainly only used by banks now), we should
use randomized counter mode.

(This is parallelizable, unlike CBC )
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Lecture 5: Data Integrity and MACs

For the randomized counter mode, to make sure that the F (k, x) pair is never repeated, we set the IV to be
a 96-bit nonce and then 32 bits of zeroes. This way, the counter can increment from 0 to 232 − 1 without
bleeding into a nonce that may have been used before.

Theorem 25 (Counter-Mode Theorem). For any L > 0 and any secure pseudo-random function F :
K×X → X , ECTR is a CPA-secure cipher from K×XL to XL+1 (where the extra block comes from the
IV).
In particular, for a q-query adversary A attacking ECTR, there exists a pseudo-random function adversary
B such that

AdvCPA(A, ECTR) ≤ 2AdvPRF(B, F ) + 2q2L/|X | .

This means that counter-mode is secure as long as q2L ≪|X |, which is a better bound than for cipher block
chaining.

Note that in counter mode, we also do not need padding because the extra part of the last block just gets
cut off in xoring.

Attacks on Block Ciphers

Goal is just to distinguish a block cipher from a random permutation - if this can be done efficiently, the
block cipher is broken. (As the adversary), we do not need to recover the entire message from the ciphertext
in order to declare the block cipher insecure.

Linear and Differential Attacks

Suppose the key selection is very slightly biased, so there is some combination of indices i1, . . . , ir, j1, . . . , jv,
ℓ1, . . . ℓu such that

Pr
[
m[i1]⊕m[i2]⊕ · · · ⊕m[ir]

⊕
c[j1]⊕ c[j2]⊕ · · · ⊕ c[jv] = k[ℓ1]⊕ k[ℓ2]⊕ · · · ⊕ k[ℓu]

]
=

1

2
+ ϵ
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for some ϵ > 0. This is equivalent to one bit of the key being slightly biased.

For DES, this exists for ϵ = 1/221.

Theorem 26. Given 1/ϵ2 random pairs (m, c) then

k[ℓ1]⊕ k[ℓ2]⊕ · · · ⊕ k[ℓu] = MAJ
[
m[i1]⊕m[i2]⊕ · · · ⊕m[ir]

⊕
c[j1]⊕ c[j2]⊕ · · · ⊕ c[jv]

]
with probability at least 97.7%.

For DES, the key is 256 bits. Using this bias, we can compute the key in time approximately 243, which is
much less than brute-force, which would take 256.

The lesson is: don’t design ciphers yourself !!

Quantum Attacks

Grover’s theorem implies a quantum computer can find k in time O(|K|1/2). This doesn’t exist today, but is
relevant if you are encrypting something that needs to be secure for thirty to fifty years.

Message Integrity

The problem now is: Alice wants to send a message to Bob. The message is not secret, but we want to make
sure the message is not changed by an attacker before Bob receives it.

Generally, the way we do this is by appending a tag to the message, where Alice has an algorithm S that
takes in m and a key K, and generates a tag t, and Bob has a verifier V that takes in K,m, t and outputs
whether or not t is the correct tag for m. (If not, this means the message was tampered with.)

Why does this require a key?

Because if an attacker wants to modify the message, and S doesn’t take a key, then the attacker can just
compute S(m′) and replace the original tag with the tag for m′, and then Bob will not realize the message
has been tampered with. Thus, the pair S, V is only secure if the adversary cannot generate their own valid
(m, t) pairs.

Definition 27. A message authentication code (MAC) defined over (K,M, T ) is a pair of efficient
algorithms S : K ×M → T and V : K ×M× T → {yes,no} such that for all K ∈ K and all m ∈ M,

V (K,m,S(K,m)) = yes.

What is a secure message authentication code?

• attacker’s power: chosen message attack
Attacker can send m1,m2, . . . ∈ M to the challenger and get back t1, t2, . . . where ti = S(K,mi).

• attacker’s goal: existential forgery
Generate a new valid (m, t) pair (so that (m, t) is not in

{
(m1, t1), (m2, t2), . . .

}
.

Definition 28. For a message authentication code I = (S, V ) and adversary A, we define the MAC
game as follows:

16



CS 255 (Stanford, taught by Professor Dan Boneh) Aditi Talati Winter 2022

The challenger selects a random key K. Then, the adversary queries the challenger with any number of
messages mi, and for each message receives a tag ti = S(K,mi). Then, the adversary tries to generate
a new pair (m, t) such that (m, t) ̸= (mi, ti) for any i and V (K,m, t) = yes.

A message authentication code is secure if for all efficient adversaries A, the probability that A wins
the MAC game against I is negligible.

How do we construct a secure MAC?

Every secure pseudo-random function (where the range is sufficiently large) gives us a secure message au-
thentication code.

Let F be a pseudo-random function over (K,X ,Y). Then, IF = (S, V ) where S(K,m) = F (K,m) and
V (K,m, t) = yes if and only if t = F (K,m).

Theorem 29. If F is a secure pseudo-random function over (K,X ,Y) where 1/|Y| is negligible, then IF
is a secure message authentication code.

The general proof idea is based on the idea that we can model F as a truly random function over (K,X ,Y),
so that the probability Pr

[
t = F (K,m)

]
= 1/|Y| for any (m, t).

So, AES gives us a secure MAC for 16-byte messages.

This leads us to the question of whether we can build a MAC for big messages from a MAC for small
messages. And this is actually the question: how do we build a PRF over a large domain from a PRF over
a small domain?

Three Constructions

• CBC-MAC: used in banking, standardized version called CMAC

• HMAC: used in internet protocols, very popular (still sequential)

• PMAC: parallel MAC, not very popular mainly because it arose too late

Remark 30. Suppose we have a MAC built from a PRF F that outputs n-bit tags (Y = {0, 1}n). Then,
it is still secure if we truncate the tag to w < n bits as long as 1/2w is still negligible.

(a truncated version of a secure PRF is still a secure PRF)

.
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Example 31. If IF is a MAC that produces 2-bit tags, this is insecure because any (m, t) pair has a
1/4 chance of being correct (non-negligible).

Constructing a CBC-MAC

To construct a CBC-MAC, we take our message, apply CBC to it to get an encrypted one-block string, and
then apply our PRF F to it one more time with a different key to generate our tag.

18



CS 255 (Stanford, taught by Professor Dan Boneh) Aditi Talati Winter 2022

Lecture 6: Collision Resistance

We define FCBC to be our CBC-constructed pseudo-random function, which takes in two keys (K1,K2).

Theorem 32 (CBC-MAC Theorem). If F is a secure pseudo-random function, then FCBC is also a
secure pseudo-random function.

In particular, for every q-query adversary A against FCBC, there is an adversary B that runs in around
the same time against F , such that

AdvPRF[A, FCBC] ≤ AdvPRF[B, F ] + q2LO(1)/|X | .

Why the last step?

“Why do we do anything in crypto? The answer is if we don’t, then it’s insecure.”

We can show that raw CBC (without applying F one last time at the end) is insecure, because we can have
an adversary A that does the following:

• choose an arbritary m ∈ X (this means it is one block long)

• request tag for m; since this is only one block, we can see that t = F (K1,m)

• create a forgery with the two-block message m,m ⊕ t and tag t (if we compute CBC on this, we can
see that this is actually the tag)

Thus, there is a forger for raw CBC.

But, this forger created a forgery with a different-length message. This is not a coincidence - raw CBC is
secure for fixed-length messages.

CBC-MAC padding

If the message length is not a multiple of the block size, we need to pad the last block.

Padding with all zeroes is not secure, because an adversary can pass in an m that is not a multiple of the
block size, get a tag t, and then (m ∥ 0, t) is a valid forgery.

Thus, we need a one-to-one padding function. We will pad with “10000” until the message is a multiple of
the block size, using a dummy block if the message is already a multiple of the block size.

This is interesting because even though we never need to “decrypt” CBC-MAC, we still need a one-to-one
padding function because collisions in the padding process means that a message forgery is possible.

There is an alternative called CMAC which uses a clever padding system (which relies on randomization) so
that the dummy block is not needed.

CBC-MAC is sequential, so it is not parallizable. PMAC (parallel MAC) is much better, but it is not widely
used for historic reasons.
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(a diagram of how PMAC works)

In this diagram p(K ′, i) is an easy-to-compute function; if it were not there, this would be insecure because
a swapping of the blocks would produce the same tag. Another benefit of PMAC is that we can change a
single block of the file and easily modify the tag without having to recompute the entire process.

Collision Resistant Hashing

Let H : M → T be a hash function. (|T | ≪|M|)
A collision for H is a pair (m0,m1) such that H(m0) = H(m1). By pigeonhole principle there must be
many collisions on H, yet for a collision-resistant hash function these are very difficult to find.

Definition 33. A hash function H : M → T is collision resistant if for all (explicit) efficient adver-
saries A,

AdvCR[A, H] = Pr(A outputs a collision for H)

is negligible.

There is a problem with this definition - we know that there exists a collision (m0,m1), and we know there
exists an algorithm that does nothing but print m0 and m1, which is efficient. However, this algorithm
should not be “findable.” In complexity theory terms, we want all uniform algorithms to fail at finding a
collision.

Standard Examples

• 2001: SHA256, SHA384, SHA512 (numbered based on how many bits the hash values are)

• 2014: SHA3-256, SHA3-384, SHA3-512

But the 2001 versions can be computed very quickly and those are still the norm.

An Immediate Application

To get from a small MAC to a big MAC:
Let’s say (S, V ) is a secure MAC over (K,M, T ) for short messages, and H : Mbig → M is a collision-
resistant hash.

Then, we can define (S′, V ′) to be a MAC over (K,Mbig, T ) where

S′(K,m) = S(K,H(m))

V ′(K,m, t) = V (K,H(m), t).
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Theorem 34. If (S, V ) is a secure MAC and H is a collision-resistant hash, then (S′, V ′) is also a secure
MAC.

The idea behind the proof is the following:

Suppose an efficient adversary A successfully attacks (S′, V ′); that is, it sent m1,m2, . . . ,mq to the challenger
and got back t1, t2, . . . , tq. Then, it generated a valid forgery (m, t).
Then, either H(m) = H(mi) for some i, in which case the hash function is not collision-resistant, or
H(m) ̸= H(mi) for all i, in which case (H(m), t) is a valid forgery on (S, V ). Since both options break our
assumptions, (S′, V ′) must be secure.

Note that if the hash were not collision resistant (we can efficiently compute a pair (m0,m1) such that
H(m0) = H(m1)) then our new MAC is not secure because if we get the tag t for m0 we can produce the
forgery (m1, t).

How do we construct collision-resistant hashes?

(I have not taken notes on the birthday paradox, but an explanation can be found here.)

By the birthday paradox, if H : M → T outputs ℓ-bit strings, we can find a collision in time 2ℓ/2 = O(
√
|T |).

Specifically, we choose 2ℓ/2 strings uniformly at random, compute their hashes, and look for a collision. Be-
cause this gives a collision with probability 1/2, we can expect that after two iterations, we find a collision.

For a 128-bit hash, this means we can find a collision in time 264, which is not secure. For a 256-bit hash,
the collision time is 2128, which is much better.

Hard puzzle: We can find a collision in time O(2ℓ/2) using O(1) space - how?

Quantum: There is some evidence that quantum computers can find a collision in time 2ℓ/3, but this is
mainly still an open problem (because the size necessary to do this is very unpractical).

Constructing a Collision-Resistant Hash

Merkle-Damgard construction (MD)

• h : {0, 1}b × T → T is known as the compression function

• c0, c1, c2, . . . are the chaining variables

• IV is a fixed publicly known value

(In SHA256, the block size is 512 bits.) We pad the message to ensure that it has a length that’s a multiple
of b, by adding a string “10000” and then the message length. If there is no space for the pad, we add a
dummy block. This doesn’t increase the size of the output, just the number of steps the hash function takes.

Theorem 35. If the compression function h is a collision-resistant hash, HMD is a collision-resistant
hash.
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Lecture 7: Authenticated Encryption

Applications for Collision-Resistant Hashing

There are three general ways to create data integrity: one of them is the MAC we discussed before, if the
sender and recipient both have a secret key.

The other way is that if there is some small public read-only space (so only authorized people can write to the
space, and the data is guaranteed to be unmodified), we can store the hashes of each of the files, so that in
order to modify the file, the adversary would need to find a replacement file that has the same hash as before.

Later in the course, we will learn about the third way, which involves digital signatures.

Back to...

Constructing a Collision-Resistant Hash

Last time, we discussed the Merkle-Damgard construction, which converted a smaller compression function
into one that worked on larger messages, while remaining collision-resistant.

Last time, we didn’t get to the proof of Theorem 35, so we will prove that now.

Proof. The idea behind the proof is that if two messages m0 ̸= m1 had the same final output under HMD,
then the hash h to produce the last output produced the same output for both messages. Thus, either we
have found a collision on h, or the last block and the second-last chaining variable are the same for both
messages; specifically, since the last block contains the message length, both messages must be the same
length.

Then, since the second-last chaining variable is the same for both messages, we can again see that either
we have found a collision on h or the third-last chaining variable and the second-last block are the same for
both messages. We can repeat this backwards to the start of the message, and we get that either at some
point we have found a collision on h, which contradicts the fact that h is collision-resistant, or m0 ̸= m1, in
which case we have not actually found a collision on HMD.

Now, we have to think about how to make these smaller compression functions h.

Constructing compression functions h

Davies-Meyers

Let E(K,x) be a block cipher over (K,X ) where X = {0, 1}n.

Then, h(m, c) = E(m, c)⊕ c (the message is being used as the key).
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For example, AES would not be a secure cipher to use here because it is not designed to be used when the
adversary controls the key.

The following is a vague statement of a theorem:

“Theorem” 36. If E is an ideal cipher (a random collection of permutations), then finding a collision
on h(m, c) takes time at least 2n/2.

This is as good of a lower bound as we can hope for, because we know the Birthday Attack runs in time
O(2n/2).

SHA256 uses a specific E called SHACAL2, with the Davies-Meyers method.

In summary, there are three steps to building collision-resistant hashes:

1. Merkle-Damgard, so that we need to build h

2. Davies-Meyers, so that we need to build E

3. building E

Building a MAC from a Hash Function

We know already that a PRF leads to a MAC, so we’re really looking at how to build a PRF from a hash
function H : M → T .

Attempt 1: F (K,m) = H(K ∥ m). This is a bad idea for Merkle-Damgard hash functions, because we
know that if m′ is one block, then F (K,m ∥ pad(m) ∥ m′) = h(m′, F (K,m)), so by knowing F (K,m) the
adversary can generate a new valid message, tag pair.

Standard Method:
FHMAC(K,m) = H

(
(K ⊕ opad) ∥ H((K ⊕ ipad) ∥ m)

)
.

That is, we are taking the hash of the key (xored with some inner pad) appended with m, adding the key
(xored with some outer pad) to the beginning, and taking the hash again. The outer and inner pads are
fixed known strings.

Theorem 37. If the compression function h(m, c) is a secure pseudo-random function with either m or
c as the key, then HMAC is a secure PRF.

Thus, a crypto library that implements SHA256 can be used to create a secure MAC.

So far, we have looked at two things: how to send private messages (protect against eavesdropping) and how
to protect data integrity. However, if we do not protect against tampering attacks, we don’t have confiden-
tiality - for example if an attacker Eve can modify a ciphertext email so that the plaintext email says “to Eve”
rather than “to Bob,” and the server reads that and sends the email to Eve, we no longer have confidentiality.
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Definition 38. We define authenticated encryption to be the combination of confidentiality and
data integrity.

Definition 39. We define the ciphertext integrity game as follows:

The challenger first picks a random key K. Then, the adversary A can send as many queries as they
want, where a query occurs when A sends a message mi and receives ci = E(K,mi).

Then, the adversary sends a ciphertext c, and wins the game if this was not one of the ci’s and the
decryption algorithm does not reject the ciphertext.

Definition 40. An cipher (E,D) provides authenticated encryption if (E,D) is CPA secure and
provides ciphertext integrity.

Constructions Using MAC and Cipher Assume I = (S, V ) is a secure MAC and (E,D) is a CPA-secure
cipher. We also have a key K = (Ke,Km) (one key for encryption and one for the MAC). How do we create
authenticated encryption?

First Option: MAC then Encrypt
(This was used in TLS 1.0) We first compute the tag t = S(Km,m) and then compute c = E(Ke,m ∥ t) and
then send c.
This is insecure because it does not provide ciphertext integrity and is also vulnerable to timing-based
attacks where the attacker checks how long the decrypter takes in order to figure out whether the tag was
valid or not.

Second Option: Encrypt then MAC
(This was used in GCM and IPSec) We first encrypt the message to get c = E(Ke,m), then compute the
tag t = S(Km, c) and then send (c, t).

Theorem 41. If I = (S, V ) is secure and (E,S) are secure (and they have independent keys), then this
option has authenticated encryption.

Proof. We can see that if this was insecure, then either it would not provide ciphertext integrity, which would
imply our MAC was insecure (the adversary should not be able to create a new ciphertext with a valid tag),
or it would not be CPA secure, which implies E was not CPA secure.

Third Option: Encrypt and MAC
(This was used in SSH) We compute the tag t = S(Km,m) and encrypt the message to get c = E(Ke,m)
and send (c, t).
This is insecure in the general case because our tag is allowed to reveal information about the message. In
the specific case for SSH, they use a MAC that does not reveal such information.
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Lecture 8: Intro To Public-Key Cryptography

There are many common mistakes in trying to achieve authenticated encryption, especially before it was
standardized. One such mistake (made by Apple in Developer Mode) was the following:

(but using CBC mode, not CTR mode) This is bad because the IV was included in the final ciphertext
but not in generating the tag, so it could be modified, and in CBC mode it can be modified to change the
decrypted plaintext in small desired ways.

Galois Counter Mode (GCM) is the standard for authenticated encryption now; it uses a nonce-based counter
mode encryption and then MACs.

Authenticated Encryption with Associated Data (AEAD)

In the interface for standard crypto libraries (such as boringSSL), the encryption function allows you to
include associated data along with the plaintext, key, and IV in the input.

(As a sidenote, the boringSSL encrypt function outputs the ciphertext and the tag as two separate variables,
which is bad because the developer using it is then able to use the ciphertext without the tag and create
insecure ciphers.)

The associated data gets concatenated to the beginning of the ciphertext when generating the tag, and then
gets passed as a parameter into the decryption function so that the decryption algorithm can make sure the
ciphertext is tied to the correct associated data.

For example, a packet sent across a network is sent with a public header, so only the payload is encrypted,
but the header is passed as associated data, so we can make sure the header did not get modified before
decrypting the payload.

Case Study: GCM in TLS 1.3

The browser and server are trying to communicate, and they are sending TLS records back and forth, of size
at most 214 bytes.

We agree on two sets of keys, KB→S and KS→B . Both the browser and server know both keys (they each
need one for encryption and one for decryption), and these are derived from a master secret using a process
called Hash-Based Key Derivation Function (HKDF).
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They use what is called stateful encryption; each side maintains two 64-bit write sequence counters, WSCB

and WSCS . They both start at zero at setup, and WSCB counts the number of records the browser sent
to the server, and WSCS counts the number of records the server sent to the browser. For example, the
browser’s WSCB would increase each time it sends a record, and the server’s WSCB would increase each
time it recieves a record.

Then, when the browser sends a record to the server, it sends it with the associated data (WSCB , record type,
“protocol version 3.1”). [It’s 3.1 and not 1.3 for historical reasons] The nonce for the encryption isWSCB⊕iv,
where the IV is generated at session setup. It then sends the ciphertext, with header information appended
at the beginning.

Note that because TLS is built on top of PCP, which guarantees in-order delivery, the server can keep its
own copy of the counter and compute the nonce on its own, without it having to be sent with the packet.
This prevents a replay attack - for example, if you order a book from Amazon, a replay attack could send
the ciphertext for the same order later, and you will end up buying two books.

This is the end of Part 1 of the course.

In summary, part 1 of the course was about symmetric cryptography. You should now be able to answer the
question:
“Alice and Bob have a shared key. Alice wants to send a message to Bob. What do they do?”
with:
“They need to use an authenticated encryption mode such as AES-GCM.”

The two fundamental points you should know by now are:

1. If you only need integrity: use a MAC.

2. If you need confidentiality: use an authenticated encryption scheme.

Now, we turn to the question:
Where does the shared key K come from?

Answer: it comes from a key exchange protocol!

Basic Key Exchange

Method 1: Trusted Third Party (TTP)

Each person out of our millions of people (or four) have a shared secret key with the trusted third party.
Specifically, we can say that Alice has shared secret key KA with the TTP and Bob has shared secret key
KB with the TTP. How do Alice and Bob get a shared secret key?

Here is a toy protocol for a key exchange (because it is only secure against eavesdropping).

We have a CPA-secure cipher (E,D) with key space K. The TTP generates a new shared key Kab randomly
from K. Then, the TTP sends Alice E(KA,Kab) and the ticket E(KB ,Kab). Alice decrypts the first cipher-
text to get Kab, and she sends the ticket to Bob, who is able to decrypt it and also get Kab. Since (E,D) is
CPA-secure, the adversary learns nothing about Kab, so this is safe against eavesdropping.

However...

• the TTP is needed for every key exchange, so if it goes offline, no one can communicate
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• the TTP knows all secret keys (backdoor heaven) - reminder that there are major societal implications
to the cryptography we are discussing !!

• basis of Kerberos system (Windows) and used in many corporate networks

Basic Question: Can we generate a session key without an online TTP?
Answer: Yes! This is the basis of public-key cryptography.

How?

• Merkle (1974): Merkle Puzzles can do it using only symmetric ciphers, but would require sending
gigabytes of data (and cannot be improved using this method), so completely impractical.

• instead, use algebra:

– Diffie-Helman (1976)

– RSA (1977)

– Elliptic Curve Cryptography (1984)

– ... and more

Key Exchange without an Online TTP

Note that for now we are just focusing on eavesdropping security.

Basic Diffie-Helman Key Exchange

Fix a large prime p (on the scale of 600 digits - we will see next lecture how this can be done quickly) and
an integer g such that 1 < g < p. Then, Alice knows some integer a such that 1 ≤ a ≤ p− 1, and Bob knows
some integer b such that 1 ≤ b ≤ p− 1.

Then, Alice computes A = ga (mod p) (we will see next lecture how this can be done quickly) and sends
this to Bob.
Bob computes B = gb (mod p) and sends this to Alice.

Then, we define Kab = gab (mod p) (note that this is not the product of A and B). Alice can compute
this easily as Ba (mod p) and Bob can compute this easily as Ab (mod p), but the adversary, who only has
A,B, g, and p, cannot easily compute this when p is large enough. (However, this is easily computable for an
adversary with a quantum computer - once quantum computers become readily available, there is a different
algorithm ready that will replace this.)
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We will also see next lecture why this is secure (and gab (mod p) is not easily computable by the adversary),
and why this is dependent on p being prime.

You can find a lot of explanations of this topic online, but many of them miss that the important part of
this protocol is not why it works - it’s “why is this secure?”

This protocol is used everywhere on the internet.

Next time: how do we compute ga (mod p) quickly?
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Lecture 9: Cryptography Using Finite Cyclic Groups

Modular Arithmetic

We will use n to denote a positive integer, p and q to denote primes, Zn to denote the integers modulo n (the
set {0, 1, . . . , n− 1}, where we add, subtract, and multiply numbers mod n to keep the results of arithmetic
operations within the set).

We say that n and m are relatively prime if gcd(n,m) = 1.

Remark 42 (Euclid, 200BC). For all integers n,m > 0 there exists integers a, b such that

a · n+ b ·m = gcd(m,n)

We find a, b using Euclid’s algorithm, which runs in O(log(m+ n)). This is a very interesting algorithm - if
you do not know it, it is useful to look up and learn.

Example 43. The gcd of 12 and 18 is 6. We can see that

2(12) + (−1)(18) = 6,

so we can set a = 2 and b = −1.

To learn how to divide in modular arithmetic, we need to discuss inverses.

Definition 44. The inverse of x ∈ Zn is y ∈ Zn such that

x · y = 1

in Zn; that is xy = 1 (mod n). Then, y = x−1.

Example 45. When n is an odd integer, we can see that 2−1 in Zn is equal to n+1
2 , because 2

(
n+1
2

)
=

n+ 1 = 1 (mod n).

Which elements in Zn have an inverse?

Lemma 46. An element x ∈ Zn has an inverse if and only if gcd(x, n) = 1.

Proof. If gcd(x, n) = 1, then by Euclid’s Algorithm we can find a, b ∈ Z such that a · x+ b · n = 1. But then
taking everything mod n, we get that a× x = 1 in Zn, so a = x−1 in Zn.

If gcd(x, n) > 1, then for all a ∈ Z, we can see that gcd(ax, n) > 1 as well. But then ax ̸= 1 in Zn, and since
this is true for all a, x has no inverse.

More notation: Z∗
n is the set of invertible elements in Zn, or the set

{
0 ≤ x < n : gcd(x, n) = 1

}
.

Example 47. For any prime p, Z∗
p = {1, 2, . . . , p− 1}; that is, it is everything in Zp besides 0.

For any x ∈ Z∗
n, we can compute x−1 in Zn in time O(log2 n).
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Now we can solve modular linear equations:
If we have to solve

a · x+ b = 0

in Zn, where a ∈ Z∗
n, we know that

x = (−b) · a−1.

Moreover, we can use this to solve a system of linear equations using Gaussian elimination, since this just
requires adding, subtracting, multiplying, and inverses.

What about quadratic equations?

In order to understand this, we need to understand the structure of Z∗
p. (We are focusing on primes for now,

we will get to Z∗
n for composite n later.)

Theorem 48 (Fermat, 1640). Let p be a prime. Then, for all x ∈ Z∗
p,

xp−1 = 1

in Zp.

Example 49. When p = 5, 34 = 81 = 1 in Z5.

Moreover, this means that for x ∈ Z∗
p, we have that x(x

p−2) = 1 in Zp, so xp−2 = x−1. This gives us another

way to compute inverses in Z∗
p, but its running time is O(log3 p).

We can also use this to generate a (probable) 2048-bit prime: pick p randomly from the set of 2048-bit
integers. If 2p−1 = 1 in Zp, output p. If not, pick a different p and continue until we find one that works.
The probability that we output a non-prime is small but nonzero.

Example 50. In Z∗
11, what is 3

2022? This is equal to

(310)20232 = 1202(32) = 9.

In general, for all a ∈ Zp,

ak = ak (mod p−1) in Zp.

Theorem 51 (Euler). The structure theorem of Z∗
p says that Z∗

p is a finite cyclic group. This means
there exists some g ∈ Z∗

p such that {
1, g, . . . , gp−2

}
= Z∗

p.

Such a g is called a generator.

Example 52. We can express Z∗
7 in terms of powers of 3 as

{1, 3, 2, 6, 4, 5} ,

so 3 is a generator of Z∗
7. But we can see that the powers of 2 in this group are {1, 2, 4}, so 2 is not a

generator of this group.

We can define a finite cyclic group more generally.
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Definition 53. A group is a pair (G, ·) where G is a set and · : G×G → G is a multiplication operation.

For (G, ·) to be a group it must be closed under the operation, which means for any a, b ∈ G, a · b must
also be in G.

Moreover, it must contain an identity e, such that e · a = a for any a ∈ G, every element a ∈ G must
have an inverse a−1 ∈ G such that a · a−1 = e, and the multiplication operation must be associative.

Definition 54. A finite group is one in which the set G is finite.

Definition 55. A cyclic group is one which has a generator g as defined above.

(Cyclic groups also have the property that the multiplication operation is commutative, but this is implied
by the fact that they have a generator.)

With weird definitions of the multiplication operations, we can come up with some strange finite cyclic groups.

Definition 56. For an element h ∈ G, the order of h is the size of the set
{
1, h, h2, . . .

}
.

Example 57. In Z∗
7, the order of 3 is 6 but the order of 2 is 3, based on the sets from the previous

example.

In general, if g is a generator of G, its order must be |G|.

Remark 58. For all g ∈ G, gorder(g) = 1.

Theorem 59 (Lagrange). For all g ∈ G, order(g) will be a factor of |G|.

As a corollary, for all g ∈ G, g|G| = 1 in G.

How do we compute roots?

Suppose that G is a finite cyclic group with known prime order and with a generator g ∈ G.

Example 60. Fix a prime p. Then, pick an element h in Z∗
p such that order(h) = q, where q is prime.

Then, we can let G be the subgroup of Z∗
p generated by h.

Our problem is, given h ∈ G and some 1 ≤ e ≤|G|, find

y = h1/e.

This means, find y such that ye = h.

Our algorithm to do this is quite simple:

1. Compute α = e−1 (mod q) where q = |G|.

2. Output y = hα ∈ G.
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Why is ye = h? Well, α · e = 1 (mod q). Then, there is some integer k such that αe = 1 + kq by definition
of mod. But then,

ye = (hα)e = hαe = h1+kq = h(hq)k = h,

since hq = 1 in G.

How do we compute exponents?

Let g be a finite cyclic group of order q. We take as input h ∈ G, and x ∈ Z, and we want to output hx ∈ G.

We use an algorithm called the repeated squaring algorithm.

Example 61. Suppose we want to compute h13. We begin by writing 13 in binary; 13 = 11012. But
this means that 13 = 8 + 4 + 1. But this means that

h13 = (h8)(h4)(h).

The repeated squaring algorithm does the following:
First, take the binary expansion of x, and let x[i] be the ith digit in the binary expansion (where x[0] is the
least significant digit and x[n] is the most significant digit). Then, run the following process:

z = 1, y = h

for i = 0, 1, ..., n:

if x[i] == 1:

z = z*y (in G)

y = y*y (in G)

output z

We can see that using repeated squaring, y contains the current relevant power of h, and we multiply that
into our accumulator z if it is one of the powers of two that sum to the power we are computing.

This runs in at most 2 log2 x multiplication steps, which is very efficient. If the exponent is larger than
the size of the group, we can just mod it by the size of the group, so this process takes at most 2 log2|G|
multiplication steps.

In the cryptographic group we’re interested in, multiplication takes time O(log2|G|). Thus, overall, expo-
nentiation takes time O(log3|G|).
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Lecture 10: Public-Key Encryption Schemes

We will go back to looking at the Diffie-Helman protocol, but now more generally in a finite cyclic group.
In practice, this group G is an elliptic curve, not the integers mod a prime p.

Diffie-Helman (in a cyclic group)

Alice and Bob both agree on (G, q, g), where G is a finite cyclic group, q is the order of that group, and g is
a generator in G.
Then, Alice picks some random 0 ≤ α < q and Bob picks some random 0 ≤ β < q. Alice sends A = gα ∈ G
to Bob, and Bob sends B = gβ ∈ G to Alice.
Then, the key is gαβ ∈ G, which Alice can compute as Bα and Bob can compute Aβ .

This means an eavesdropper sees (g, gα, gβ) and wants to compute gαβ - we want this to be a hard problem.

Definition 62. The computational Diffie-Helman assumption (CDH) holds in (G, g) if for all
efficient adversaries A, the probability

Pr
[
A(g, gα, gβ) = gαβ

]
is negligible when α, β are randomly chosen from the integers mod q.

An algorithm trying to compute gαβ from (g, gα, gβ) is called a CDH algorithm.

For the Diffie-Helman protocol, the group G and the generator g are standardized at a national level.

cyclic group: Z∗
p the elliptic curve over Zp

best known CDH algorithm: General Number Field Sieve (GNFS) baby step-giant step (BSGS)

running time of that algorithm: e
3
√

ln(p) √
p = e

1
2 ln(p)

to be secure... p must be > 2048 bits p can be 256 bits

speed slow not so slow !!

Table 1: Our two examples of cyclic groups where CDH holds.
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(A problem for you to think about: for any group of size p, how do we compute the CDH in time
√
p?)

Now we move on to a related problem:

The Discrete Log in G

The discrete log problem is: given h ∈ G, find α ∈ Zq (the integers mod q) such that h = gα.

Example 63. In the group Z∗
11, we can compute the discrete log base 2:

n 1 2 3 4 5 6 · · ·
Dlog2(n) 0 1 8 2 4 9 · · ·

Remark 64. If discrete log in G is easy, this means that CDH in G is easy.

Proof. If discrete log is easy, given (g, gα, gβ), we can compute α easily as Dlogg g
α. Then, once we have

alpha, we can just compute gαβ as
(
gβ

)α
.

Thus, for CDH to be hard in G, the discrete log problem must also be hard.

The converse, “CDH is easy implies discrete log is easy” is an open problem that Professor Boneh has worked
for a while on.

We have one more fact about modular arithmetic to learn:

Arithmetic mod composites n

Definition 65. Let the Euler totient function, φ(n) be equal to |Z∗
n|. That is, let φ(n) be equal to

the number of elements that are invertible mod n, or the number of elements relatively prime to n.

Example 66.
φ(12) =

∣∣{1, 5, 7, 11}∣∣ = 4.

Theorem 67 (Euler). For all x ∈ Z∗
n, x

φ(n) = 1 in Zn.

This is a generalization of Fermat’s theorem, applying it also to composites.

Example 68. We can see that in Z12,

5φ(n) = 54 = 625 = 1

in Z12.

We know that computing φ(n) is as hard as factoring n, which we believe to be a hard problem. If we don’t
know the factorization of n, then for e > 1, computing eth roots of elements of Z∗

n is also believed to be
difficult.

With a quantum computer...

• Dlog for all finite cyclic groups,

• factoring n,
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• CDH

are all easy (cubic time) on a quantum computer.

So do we just go home and cry?

No, there’s a new (very productive) field called post-quantum cryptography that explores cryptography
that we can do on a regular computer that would be secure even against a quantum attacker.

Examples of this are lattice systems and isogeny systems. But these are computationally heavier than the
methods we use right now, which is why we won’t switch to them until they become necessary.

The reason we believe Diffie-Helman is hard is because people have tried for forty years to break it and have
not succeeded - there is no mathematical proof that it is a difficult problem.

We are now switching topics, and we will start talking about public-key cryptosystems.

Two settings for communication: interactive vs. non-interactive

The below is an example of interactive communication:

while the below here is an example of non-interactive communication:
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In particular, in non-interactive communication, since Alice and Bob are not online at the same time, instead
communicating through a third party, they cannot set up a session key.

So how do they communicate??

This is the topic of public-key encryption (PKE)

Alice has a message m she wants to send to Bob. She takes PKb, which is Bob’s public key, and encrypts
the message using Bob’s public key. Then, she sends over c = E(PKb,m).

Then, Bob gets the ciphertext c, and he can decrypt the message using his secret key: m = D(SKb, c).

This is almost exactly the same as the process for symmetric encryption, except the key for encryption and
the key for decryption are different. We call the pair (PKb, SKb) a key pair.

Definition 69. A public-key encryption scheme (PKE) over (M, C) is a tuple of algorithms:

• Gen() produces a key pair (PK,SK) and is a randomized algorithm

• E(PK,m) → c is a randomized algorithm

• D(SK, c) → m or reject is a deterministic algorithm

such that for any (PK,SK) produced by Gen() and for any message m ∈ M,

D(SK,E(PK,m)) = m.

For public-key encryption, we can again define semantic security:

Definition 70. For public-key encryption, we define semantic security (security against eavesdrop-
ping) using the following game:
The challenger chooses b = 0 or b = 1 and generates a (PK,SK) pair. Then, the adversary sends two
messages m0 and m1 of the same length, and the challenger returns E(PK,mb). Finally, the adversary
guesses the value b.

A public-key encryption scheme E is semantically secure if for all efficient adversaries A:

Adv[A, E ] =
∣∣Pr[W0 = 1]− Pr[W1 = 1]

∣∣
is negligible, where Wb is the output of the adversary in experiment b.
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Remark 71. A semantically secure public-key encryption scheme means E must be randomized.

Since the adversary knows PK, against a deterministic algorithm E the adversary could just do the follow-
ing:
First, send two messagesm0 =“hello” andm1 =“world.” Then, get back a ciphertext c. If c = E(PK,“hello”)
return 0, otherwise return 1. This has an advantage of almost 1. Thus, deterministic E’s are not semantically
secure.

But we can’t forget about ...
Data Integrity for Public-Key Encryption
But we won’t discuss this right now either. Stay tuned for next time
(Specifically, as we have defined this now, the recipient knows nothing about the identity of the sender. Next
time, we will fix this using digital signatures).

Now, we will turn to applications of public-key encryption. The first is:

Toy Key Exchange from PKE

Again, this will be secure against eavesdropping.

Alice generates a random pair (PK,SK) from Gen(). Then, she sends PK to Bob, and Bob randomly
generates a shared key K from M, and then sends Alice c = E(PK,K). Using her secret key, Alice can
decrypt this and get K = D(SK, c). Now, they both have the secret key K.

To show this is secure: an eavesdropper sees PK, c and wants K (which is the unencrypted version of c).
But since the PKE is semantically secure, an efficient adversary A cannot distinguish c from the encryption
of any other message m ∈ M of the same length. Thus, an efficient adversary can’t obtain K, so this is
secure against eavesdropping.

The difference between this and the Diffie-Helman key exchange is that everyone has a permanent public
key registered with the cloud (in the iMessage example), so Bob can generate and encrypt their shared key
while Alice is offline, and then Alice will know the shared key as soon as she goes online. This requires a lot
less back-and-forth before actually getting the shared key, compared to Diffie-Helman.
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Both toy key-exchange protocols are insecure against person-in-the-middle attacks

This is why both key exchange protocols are toy protocols: you need more machinery to defend against
person-in-the-middle attacks. (This is why we’re learning about digital signatures next time.)

38



CS 255 (Stanford, taught by Professor Dan Boneh) Aditi Talati Winter 2022

Lecture 11: RSA Encryption

Three Applications of Public-Key Encryption

1. Toy Key Exchange (as discussed last lecture)

2. File Sharing in an Encrypted Filesystem:
if (Es, Ds) is a symmetric cipher over (K,M, C) and (Gen, E,D) is a PKE

Alice has Ka which is a key randomly selected from K. She wants to upload a file F1 to the cloud.
So, she will choose a random key K1 from K, and compute Es(K1, F1) and Es(Ka,K1). She uploads
Es(Ka,K1) to the metadata section, along with information such as the filename, and she uploads
Es(K1, F1) to the data section.

Then, Alice wants to give Bob access to F1 but not F2; that is, she wants him to know K1 but not
K2. Moreover, she can’t directly send him K1 because she cannot interact with him directly - just the
cloud. So, she does the following:

• get PKB from the cloud (assume this can be done reliably, the how will be discussed later)

• append the metadata section for F1 to include E(PKB ,K1)

• now Bob can use the metadata section to access K1, and read/write to F1

When Windows uses EFS, this is exactly what happens!

Answers to Questions:

• Once we have given Bob access, we can revoke access by removing E(PKB ,K1) but this assumes
he hasn’t saved F1 or K1 already. To protect against the latter, we can change the encryption
key for F1 and re-encrypt it, but we cannot protect against the former.

• The reason we use a separate key K1 for encrypting F1 is that this prevents us from separately
encrypting F1 using each person’s keys - since F1 is large and K1 is small, having multiple
encryptions of K1 is a much more viable option.

3. Encrypted Chat System (like iMessage): Alice and Bob both give their public keys to the cloud. Then,
when Alice wants to send a message to Bob, she asks for PKB and sends E(PKB ,m) to the cloud -
this can sit in the cloud until Bob is ready to decrypt and read it. Bob does the same when he wants
to send a message to Alice.

Now, we have seen how PKEs work and some applications, so we turn to the question of:

Constructing a PKE: ElGamal encryption (1982, Stanford)

This is a PKE constructed from Diffie-Helman.

Ingredients:
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• G: a finite cyclic group of order q with generator g ∈ G

• (Es, Ds): a symmetric cipher over (K,M, C)

• H : (G,G) → K is a hash function

First, we construct Gen():
We select an α randomly from Zq and we compute h = gα. Then SK = α and PK = h. We know that
computing α from h is hard because this is the dlog problem.

Then, we construct E(PK,m):
To encrypt a message m, where PK = h, we select a β randomly from Zq and compute u = gβ and
v = hβ = gαβ .
Then, we create a key K = H(u, v) ∈ K. (What’s important here is that the key is derived from v, which is
the Diffie-Helman secret.)
Then, we compute c = Es(K,m), and we output (u, c).

Then, we construct D(SK, (u, c)):
We know that SK = α. Then, we can see that v = gαβ = uα. So given u, we can compute v. Then, we can
compute K = H(u, v) as before, and then m = Ds(K, c).

Answers to Questions:

• H is a deterministic hash function - in reality, people use SHA-256

• When we want to add authenticated encryption to this, we will add all the authenticated encryption
to the symmetric cipher (e.g. using AES-GCM as our symmetric cipher).

• Putting u in the hash mainly just allows for a cleaner security proof, it’s not strictly necessary.

Performance: encryption takes two exponentiations in G and one symmetric encryption, decryption takes
one exponentiation in G and one symmetric decryption - this is not bad!
As a standard, we use ECIES (elliptic curve integrated encryption system).

Security: these theorems will be stated but not proved. The proofs are in the book (not too difficult) if you
would like to see them.

Theorem 72. Our PKE (Gen, E,D) is semantically secure assuming

• CDH holds in our group

• (Es, Ds) is semantically secure (but we don’t need CPA security)

• H is a secure key derivation function (vaguely, this means it preserves the entropy in v)

Theorem 73. Our PKE (Gen, E,D) is CCA secure (will be defined later today, but vaguely means
secure against tampering) assuming:

• “interactive D-H” assumption holds in our group (not going to explain, but a stronger assumption
than CDH)

• (Es, Ds) provides authenticated encryption

• H is a “random oracle” (vaguely means an ideal hash function)

We’ve been talking about cryptography using finite cyclic groups, which is what is primarily being used
today. Now, we will move on to cryptography using the problem of factoring large integers. (not factoring
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large primes - that’s easy!) RSA is on its way out, though, because it is difficult to implement securely in
practice.

Definition 74. A PKE (Gen, E,D) is secure against chosen ciphertext attack (CCA secure) if all
efficient adversaries have negligible advantage in the following game:

First, the challenger selects b = 0 or b = 1 at random, calls Gen() to generate a public key and secret
key, and sends PK to the adversary. Then, the adversary sends an encryption query m0,m1 to the
challenger, and gets back c = E(PK,mb).

Then, the adversary can send as many decryption queries as they want, where in a decryption query the
adversary sends ci ̸= c to the challenger and gets back D(SK, ci).

Finally, the adversary guesses b.

The adversary can’t just ask the challenger to decrypt c, but it can encrypt/decrypt whatever else it wants.
Again, we can see that we need the encryption algorithm to be randomized in order for this to be possible.
Moreover, it shouldn’t be the case that we can modify the ciphertext and predict how that would modify the
decrypted message (because then we could send c with those modifications to the challenger in a decryption
query). Thus, this protects from tampering because if the adversary tampers the ciphertext, the decryption
will (very likely) fail or return garbage values.

Now, before we switch gears to talk about RSA, we will talk about trapdoor functions.

Definition 75. A trapdoor function X → Y is a triple of efficient algorithms (Gen(), F, F−1) where:

• Gen() is a randomized algorithm that generates (PK,SK)

• F (PK, ·) : X → Y is a deterministic function

• F−1(SK, ·) : Y → X is a deterministic function that inverts F (PK, ·)

More precisely, for all PK,SK that could be output by Gen() and for all x ∈ X, F−1(SK,F (PK, x)) = x.

It’s extremely difficult to construct good trapdoor functions, because we’re looking for deterministic func-
tions that anyone can compute using the public key but cannot be inverted without the secret key.

Definition 76. A trapdoor function is secure if F (PK, ·) can be evaluated but cannot be inverted
without SK. Specifically, we can consider the following game:

The challenger generates (PK,SK) and chooses x ∈ X at random. Then, the adversary is given a public
key PK and y = F (PK, x) and outputs a guess x′.

The trapdoor function is secure if for all efficient adversaries A,

Adv[A, F ] = Pr[x = x′]

is negligible.

We can see that if the adversary guesses an x′, it can compute F (PK, x′) and check if it equals y - we need
a space X large enough that if an efficient adversary randomly guesses an arbitrary number of times, it has
negligible probability of hitting the correct x.
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ElGamal is not a trapdoor function - we can compute gα given α very easily, but there is no secret key
(we know of) that would make it easy to compute α given gα. Public-key encryption is also not a trapdoor
function - the encryption algorithm uses randomness, so it is not a function.

How do we use this to construct a public-key encryption scheme?

We have

• (Gen(), F, F−1) our trapdoor function

• (Es, Ds) a symmetric encryption scheme over (K,M, C)

• H : X → K a hash function

To construct Gen(): we just call Gen() from our trapdoor function.

To construct E(PK,m): we select x randomly from X. Then, we compute K = H(x), and encrypt the
message to get c = Es(K,m). Moreover, we compute y = F (PK, x) and output (y, c).

To construct D(SK, (y, c)): we compute F−1(SK, y) to get x. Then, we compute K = H(x) and run
Ds(K, c) to get the original message.

Theorem 77. If (Gen(), F, F−1) is a secure trapdoor function, (Es, Ds) has authenticated encryption,
and H is a “random oracle,” then (Gen, E,D) is CCA secure.

(Again, we can see that our encryption function here is randomized.) Moreover, the adversary cannot tamper
with the message by messing with y - this will just produce a bogus key which means the ciphertext cannot
be decrypted (the decryption algorithm will reject with high probability).

Note that we should never use an encryption algorithm that just applies F directly to the message - this is
deterministic so it is not semantically secure!

Now we turn to the question of how to construct a trapdoor function.

The RSA Trapdoor Function

(This is a good time to go back and review Lecture 9 for relevant facts about modular arithmetic.)

To construct Gen():

• choose random distinct primes p, q that have around 1024 bits

• set N = pq

• choose integers e, d such that ed = 1 (mod φ(N)) (this means e = d−1 in ZN )

• output PK = (N, e) and SK = (N, d)

If I give you N , it is difficult to recover p and q - this is the factoring problem.

To construct F (PK, x): F ((N, e), x) = xe (mod N).

To construct F−1(SK, y): F−1((N, d), y) = yd (mod N). We can see that

yd = (xe)d = xed = xkφ(N)+1 = (xφ(N))kx = x (mod N),

where k is an arbitrary integer, from the fact that ed = 1 (mod φ(N)).
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Definition 78. The RSA assumption says that RSA with exponent e is a one-way permutation.

Specifically, for any p, q,N defined as above and y randomly selected from Zn, the RSA assumption is
that for all efficient adversaries A,

Pr
[
A(N, e, y) = y1/e

]
is negligible.

Then, RSA public-key encryption is defined the same way we defined public key encryption for a general
trapdoor function:
We have

• (Gen(), F, F−1) our RSA trapdoor function

• (Es, Ds) a symmetric encryption scheme over (K,M, C)

• H : ZN → K a hash function

To construct Gen(): we just call Gen() from the RSA trapdoor function (this gives us N , e, and d).

To construct E(PK,m): we select x randomly from Z∗
N . Then, we compute K = H(x), and encrypt the

message to get c = Es(K,m). Moreover, we compute y = F (PK, x) = xe (mod N) and output (y, c).

To construct D(SK, (y, c)): we compute F−1(SK, y) = yd (mod N) to get x. Then, we compute K = H(x)
and run Ds(K, c) to get the original message.
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Lecture 12: RSA Encryption and Digital Signatures

We should generally think of RSA as a specific example of a trapdoor function, rather than thinking about
the specific mechanics of how it works.

Remember that RSA used the trapdoor function F ((N, e), x) = xe (mod N).
When e = 1 or e = −1, this is easily invertible, so it is not a trapdoor function. A fun problem is: when
e = 2, being able to invert f means we would be able to factor N . But e = 2 still doesn’t work for RSA,
because 2 will always be a factor of φ(N), so we cannot find d = e−1 (mod φ(N)). So, the smallest valid e is 3.

Many textbooks incorrectly explain RSA as the encryption scheme that has E((N, e),m) = me (mod N);
this is insecure because it is deterministic - never do this!!

RSA doesn’t work super well in practice - it was done before we really understood cryptography, so it is not
used under the ISO standard.

RSA encryption in practice

We are trying to use RSA to encrypt and send over a secret key (for the rest of communication to be done
via a AES), so when we say “message” for the sake of RSA, it actually refers to the secret key we are trying
to encrypt.

We take a 128-bit message, apply some preprocessing to it so that its length is equal to the length of the
modulus N , and then we apply RSA to it.
So what is this preprocessing?

In PKCS1 v1.5:

We write a 02, then a random pad that doesn’t contain 00, then a 00 and then the message. This is the
preprocessing used in TLS 1.2. But this is insecure!

Attack on PKCS1 v1.5 (Bleichenbacher 1998)

The way that TLS 1.2, for example, implemented this padding method, it would decrypt a ciphertext, and
then check whether the first two bits were 02. If those were not the first two bits, it would know that this
was not a correctly preprocessed message, and it would reject. But this is a problem - from a ciphertext,
the attacker can learn whether the plaintext started with 02 or not based on whether the server rejects or not.

Specifically, the attacker has a chosen ciphertext attack where, given a ciphertext c it can pick any r ∈ Zn,
and then pass in

c′ = rec = (r · PKCS1(m))e.

44



CS 255 (Stanford, taught by Professor Dan Boneh) Aditi Talati Winter 2022

This means it can find out whether (r · PKCS1(m)) starts with 02 for any r.

What can it do with this?

Baby Bleichenbacher Attack

Say, instead, that N is a power of 2 and the server actually checks whether the most significant bit of the
message is a 1.

Then, the attacker can do the following:

• Send c to get the most significant bit of the message.

• Send 2ec to get the second bit of the message.

• Send 4ec to get the third bit of the message.

• and so on...

so that they reveal the entire message.

It is left to us as a challenge to see how to get from this to the actual Bleichenbacher attack, but it is not
that difficult. For a 2000-bit modulus, this would take about 4 million queries for the attacker to reveal the
message - this can be done in a couple hours.

This was a major deal when the attack was discovered! People were sending their credit cards over HTTP
servers, and now this was completely insecure.

The fix implemented:

1. Generate a random 46-byte string R.

2. Decrypt the ciphertext to recover the plaintext.

3. If the plaintext is invalid, pretend the message was R and continue.

This means we have a garbage message, so if we try to use it as a key things will probably break later on
(which it should, because we are being called by an attacker) but the attacker won’t get that information
about the message.
(This is pretty ad-hoc, it is used today and there is a paper now showing that this is secure when imple-
mented with the rest of TLS.)

A better version (PKCS1 v2.0: OAEP)
We are not going into the details of OAEP, but this is what the preprocessing looks like:
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This is better because it hashes the randomness into the message instead of just incorporating randomness
in the padding.

Theorem 79. Assuming RSA is a trapdoor permuation, RSA-OAEP is CCA (chosen ciphertext attack)
secure when H and G are random oracles.

In practice, SHA-256 is used as the hash function.

This is not used in practice, because all browsers and all servers need to be changed at the same time. But
this is very difficult to do, so we used the previous fix, which only required server-side changes.

There are many subtleties in implementing OAEP. For example, if you have code that looks like the following:

OAEP-decrypt(ct):

error = 0;

...

if(RSA−1(ct) > 2n−1)

{error=1; goto exit;}

...

if(pad(OAEP−1(RSA−1(ct))) != "01000")

{error=1; goto exit;}

You will be vulnerable to a timing attack! Based on whether the program throws an error quickly or slowly,
an attacker will be able to tell what the issue with the ciphertext was.
To fix this, simply remove the goto exit line from each of the functions, and only exit the program at the end.

There are three main types of side-channel attacks:

• timing
This can leak a lot of information about the message! In CS 155 next quarter, they will discuss timing
attacks with a lot of detail.
Memory attacks usually devolve into timing attacks in terms of how long it takes to read memory,
because that tells you whether something is in the cache or not.

• power
The amount of power that we use to encrypt a message can reveal information about the message.
This is very difficult to defend against, and most of the industry has given up on doing so.
We can also leak information through noise - based on the amount of power the processor is using, the
frequency of the humming of the power converter changes.

• radiation
There’s a company in San Francisco that builds super-sensitive antennae to measure a processor’s
electromagnetic field as it is computing - this leaks information about the computations! There was
a (sort of contrived) demo done a few years ago where electromagnetic analysis from ten meters away
revealed a secret key from an iPhone.

Is RSA a one-way permutation?

To invert the RSA one-way function (without d) the attacker must compute an eth root mod N .

After 50 years of studying this problem, the best known way to compute eth roots is still:

1. factor N to get p and q (hard)

2. compute eth roots mod p and q (easy)
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This gives you the eth root mod N using the Chinese Remainder Theorem - don’t worry about it if you don’t
know what that is.

Again, factoring will be made easy using a quantum computer, so RSA will be completely dead once quantum
computers arise.

Open problem: does a shortcut exist?

To prove there is no shortcut we would need to show that an efficient algorithm for eth roots would imply
an efficient algorithm for factoring N . There is some evidence we cannot prove this - (BV ’98) says that an
“algebraic” reduction from eth roots to factoring would imply that factoring is easy.

How not to improve RSA perfomance

To speed up RSA decryption, you could use a small private key d. But ...

Wiener ’87: If d < N0.25 then RSA is insecure.
BD ’98: If d < N0.292 then RSA is insecure.
Open question whether RSA is secure when d < N0.5.

Wiener’s attack
Since ed = 1 (mod φ(N)), there exists some k such that ed = kφ(N) + 1. Then,∣∣∣∣ e

φ(N)
− k

d

∣∣∣∣ = 1

dφ(N)
≤ 1√

N
.

But φ(N) = N − p − q + 1, which is well-approximated by N - specifically, N − φN ≤ 3
√
N . Then, if

d ≤ N0.25

3 , ∣∣∣∣ eN − k

d

∣∣∣∣ ≤ ∣∣∣∣ eN − e

φ(N)

∣∣∣∣+∣∣∣∣ e

φ(N)
− k

d

∣∣∣∣ ≤ 1

2d2
.

Again, we know e and N , we don’t know k or d. But this is a very small error term - small enough that
there would be very few satisfying fractions. Thus, using a process called the continued fraction algorithm,
we can solve for k/d exactly and since k and d are relatively prime, this gives us d.

This is actually faster than the standard RSA process to generate e and d!

Instead, what we do is...

How to improve RSA performance

Use a small e! The standard is 216 + 1, which would take 17 multiplications to encrypt, but with the right
implementation e = 3 would work as well.

This is called the asymmetry of RSA: encryption is much faster than decryption. ElGamal does not have
this property; it takes about the same time to encrypt and decrypt.

This also means that if you are encrypting something using a very small device - such as an IoT device -
RSA encryption is a good bet.

We are using RSA encryption to generate a secret key for another encryption scheme, which means we want
our encryption of the key to be at least as secure as encryption using the key. How big does the modulus
have to be to accomplish this? Thus, RSA is just far too expensive to be used in practice, and instead we
primarily use elliptic curve-based ElGamal.
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Key Size Modulus Size For RSA Modulus Size for EC

80 bits 1024 bits 160 bits

128 bits 3072 bits 256 bits

256 bits (AES) 15360 bits 512 bits

RSA Key Generation Trouble

Heninger et al. and Lenstra et al. downloaded all the N ’s being used for RSA encryption on the internet,
and took the gcd of each pair of them. What they should find, since each N is the product of separate
randomly generated p and q, is that for two distinct N , their gcd is 1. Instead, they found that there was a
significant number of pairs of Ns whose gcd was nonzero.
But if gcd(N,N ′) ̸= 1 then gcd(N,N ′) = p and q = N/p and q′ = N/p′, which is easily computable. This
broke 0.4% of all HTTPS public keys.

What happened was: there were many small devices (such as IoT devices) that were trying to generate an
RSA public key at startup. But their random number generator didn’t have enough entropy the first time
it was called after startup, so the ps generated were with the same seed, and ended up being the same.

Now we are moving onto ... digital signatures

The big picture: one-way functions

Definition 80. A one-way function f : X → Y is a function such that:

• there exists an efficient algorithm to evaluate f

• for all efficient adversaries A,
Pr[f(A(f(x)) = f(x)]

is negligible when x is selected randomly from X

This means not only that the adversary can’t get back x from f(x), but also that they can’t get back any
preimage of f(x).

One Way Functions we have seen so far:

1. general one-way functions:
Let (E,D) be a block cipher. Then,

fE(K) =
(
E(K, 1), E(K, 2), . . . , E(K, 10)

)
,

where fE : K → C10 (or some arbritrary number). This is a one-way function because (E,D) is secure.
This has no special properties - in particular, it is bad for a key exchange.

2. discrete log:
When G is a finite cyclic group of order q and g ∈ G is a generator,

fDlog(x) = gx ∈ G

where fDlog : 2q → G. Inverting this function is hard when Dlog in G is hard.
properties: f(x+ y) = f(x)f(y), f(x)α = f(αx) for α ∈ Z
Those properties are what allow Diffie Helman and ElGamal key exchange.
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3. RSA:
If we have N = pq, e ∈ Z∗

φ(N),

fRSA(x) = xe in ZN

where fRSA : ZN → ZN . Inverting this is hard when the RSA assumption holds.
properties: f(xy) = f(x)f(y), RSA has a trapdoor
These properties allow RSA encryption and RSA digital signatures (as we will see soon)

Digital Signatures

We want a digital signature to be evidence that you wrote/approved a message. Since on the internet we
can copy signatures between documents easily, we need the digital signature to be a function of m.

We want a pair (S, V ) where the signer gets a message and a secret key and outputs a signature σ, and the
verifier gets a message and a signature and uses a public key to output yes or no.

This is the same as the process for MACs, except it uses an (SK,PK) pair instead of a single shared key.

Definition 81. A signature scheme is a triple of algorithms (Gen(), S, V ) where:

• Gen() is a randomized algorithm that outputs (PK,SK)

• S(SK,m) → σ is a randomized algorithm that outputs a signature

• V (PK, (m,σ)) is a deterministic algorithm that outputs yes or no

and for all (SK,PK) outputted by Gen() and all messages m,

V (PK, (m,S(SK,m))) = yes.

The signer signs the message once, and anyone with the public key and (m,σ) can verify that it has been
signed correctly.

Definition 82. Security for a signature scheme (Gen, S, V ) is defined using the following game:

First, the challenger calls Gen() to generate a public key and secret key, and sends PK to the ad-
versary. Then, the adversary sends as many messages mi as they want, and the challenger will re-
turn σi = S(SK,mi). Then, the adversary outputs a pair (m,σ) and wins if m ̸= mi for any i and
V (PK, (m,σ)) accepts.

A signature scheme is secure if for all efficient adversaries A, the probability that the adversary wins
the security game is negligible.
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Lecture 13: Certificates

Many Applications of Signatures:

1. Android phones ship with a built in public key. All software updates are signed with the secret key, so
the phone can verify whether the updates are coming from a trusted source.

2. Certificates (this is what we will discuss today):
The certificate authority (CA) creates a signed message:
m =“Bob’s public key is PK”, S(SKCA,m)
Then, we can see that anyone who trusts the certificate authority can get Bob’s public key and trust
that it is not a bogus public key.

3. payments:
Your credit card contains a secret key SK. When you swipe/tap/etc your credit card on a point of sale
terminal, the terminal sends the transaction details and a nonce (recall that a nonce is a non-repeating
value) to your card, and the credit card responds with its signature on the transaction details and its
certificate. Finally, all of this is sent to the credit card network.

So far, we have seen three approaches to data integrity:

1. collision-resistant hash:
This requires a read-only public space to store the hash, but anyone can verify it.

2. digital signature:
Again, there is one signer and many verifiers, but they all need the public key.

3. MACs (message authentication codes):
This requires a shared secret key, so it is generally used with one signer and one recipient.

Extending the Domain of a Signature Scheme

Let (Gen(), S, V ) be a signature scheme for short messages; say, M = {0, 1}256. How do we extend this to a
signature scheme for long messages?

Let H : Mbig → M be a collision-resistant hash function (such as SHA-256).

Then, like with MACs, we can define

Sbig(SK,m) = S(SK,H(m))

V big(PK,m) = V (PK,H(m), σ).

Theorem 83. If (Gen(), S, V ) is secure and H is a collision-resistant hash, then (Gen(), Sbig, V big) is
also secure.

Thus, it suffices to build a signature scheme for 256-bit messages and use SHA-256 to expand it.

As we discussed at the end of last lecture, we can build signature schemes from different primitives.

Primitives that Imply Secure Signatures
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1. general one-way functions
Surprisingly, we can build signature schemes from general one-way functions. An example is Lamport-
Merkle.
Problem: signatures are long (≥ 30KB for a stateless signer, ≥ 4KB for a stateful signer)
These are suitable for software update, and they are quantum resistant!

2. discrete log
We can build signature schemes from discrete log. Examples include ECDSA, Schnorr, and BLS.
The signature size is 48 or 64 bytes and the public key size is 32 or 48 bytes.
These will not be described until we discuss zero-knowledge proofs, so that the math makes sense to
us ,
(Schnorr is a better signature scheme, but ECDSA was not patented at first, so ECDSA is being used
more generally.)

3. trapdoor permuations (RSA)
It is very easy to build a signature scheme from RSA - this will be our first example.
These are being phased out - the discrete log-based signature scheme is much better.

(A stateful signer is a signer that keeps some sort of state information each time it signs a new message - if
it reuses an old state, then all security is lost.)

Generating a Signature Scheme from a Trapdoor Permutation

We have a trapdoor permuation (Gen, F : X → X,F−1 : X → X) and a hash function H : M → X.

Then, the signature scheme is:

• Gen(): the Gen() from the trapdoor permutation

• S(SK,m): output F−1(SK,H(m))

• V (PK,m, σ): output yes if F (PK, σ) = H(m), otherwise output no

Theorem 84. The triple (Gen(), S, V ) is a secure signature scheme assuming (Gen(), F, F−1) is a secure
trapdoor permutation and H is a random oracle.

This is a very popular design, when used with RSA it is called:

RSA-FDH (full-domain hash)

This requires a hash function H : M → ZN . Then, we can construct the following signature scheme:

• Gen(): choose N = pq and e, d such that ed = 1 (mod φ(N))
output PK = (N, e) and SK = (N, d)

• S(SK,m): output σ = (H(m))d (mod N)

• V (PK,m, σ): output yes if σe = H(m) in Zn, and no otherwise

Problem: the range of H depends on the public key. But this is not that bad - in practice for the hash
functions we use we can take the output of H mod N and still have collision-resistance.
Note: We can take e = 3, and then we have a superfast verification function.

Why do we hash?

There’s only ever one answer to this question - if we don’t it’s insecure.
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If we had a signature scheme based on S(SK,m) = md (mod N), then we are vulnerable to the following
attacks:

Attack 1: an existential forgery just given PK
Step 1: choose σ ∈ Zn

Step 2: choose m = σe (mod N)
Step 3: output (m,σ) as a forgery
We can see that V will just check if σe = m, which is true by definition.

Attack 2: also an existential forgery given PK
We want to compute the signature for a message m.
Step 1: choose r randomly from ZN and compute m̂ = rem (mod N).
Step 2: Request a signature on m̂. This gives us σ̂, where σ̂e = m̂ in ZN .
Step 3: output (m, σ̂/r)
We can see that V will check if (σ̂/r)e = m in Zn. But

(σ̂/r)e = m̂/re = (rem)/re = m.

So this is a valid forgery.

Attack 2 gives us a blind signature; we can get someone to sign a message without knowing what message
they are signing. This is very useful - for example, in a voting process, the authority could sign and give
someone a voting ticket without knowing which ticket they gave the person, so each person can vote anony-
mously but nobody can vote twice.

RSA in practice: PKCS1 v1.5

This uses a hash function PKCS1: M → ZN , which is defined as follows:

Then, our signature is σ = (PKCS1(m))d ∈ ZN .

This is called a partial-domain hash because it hashes only to a specific fraction of ZN . Thus, we don’t know
how to prove that this is secure, but it is what is used in practice.

Puzzle: What if the pad was all zeroes, instead of containing the FF ’s?
Then, this would be insecure because (for example when e = 3) in order to compute the signature of a
message, we just need to compute the cube root of a small number. For example, if SHA-256(m) ends up
being a perfect cube, it would be fairly easy to compute the signature of PKCS1(m). Moreover, there is an
algorithm for computing cube roots of small numbers that works faster than factoring.

Public Key Management: certificates

How does Bob obtain Alice’s PKA? If Bob gets the wrong public key, then he would trust signatures that
are not from Alice.
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Single-Domain Certificate Authority

Alice generates a (SKA, PKA) pair for herself. She goes to the certificate authority (CA) and has to prove
to the authority that she is Alice, then tell the authority PKA. (The “prove she is Alice” step is usually
dependent on a real-world mechanism, such a passport.) Then, the authority sends a certificate to Alice.

The certificate binds PKA to the physical identity “Alice.”

Then, Alice sends Bob the certificate. He can verify the certificate (because he knows the CA’s public key),
and then he knows PKA.

This is a lot better than the trusted third party in the symmetric world, because the CA has no one’s secret
key.

In reality, we have root CA’s and intermediate CA’s.

So then, the certificate for Amazon would actually be a lot longer than just having a signature from the root
CA, since the root CA didn’t actually verify Amazon’s public key. Instead, it would look like this:

Since everything is dependent on the root CA secret key, the root CA secret key is typically stored offline.
There are about 60 root CA’s and 1200 intermediate CA’s in the world.
For next time: what happens if one of the intermediate CA’s decides to go rogue and make and sign their
own proxies?

53



CS 255 (Stanford, taught by Professor Dan Boneh) Aditi Talati Winter 2022

Lecture 14: Identification Protocols

Certificate Revocation

What happens when someone’s private key is stolen, and we need to revoke their certificate?
(A couple years ago, there was a bug in the Apache web server, which revealed around a million secret keys,
and those certificates needed to be revoked all at once.)

1. expiration date:
Every certificate is only useful until its expiration date, so if a secret key is stolen, it is only tied to a
valid certificate for a limited amount of time. But certificates typically expire after a year, so there is
still a lot of time to cause damage before they expire.

2. CRL (certificate revocation list) set:
This is shipped daily from Google to Chrome, Firefox, and etc. Then, the browser can check whether
the serial number for your certificate is on the revocation list, and consider it invalid if it is. (If
you realize your private key has been compromised, you fill out a form to add your certificate to the
revocation list via offline methods.)
These are more difficult to block because they are being sent out by Google, so you can’t prevent access
to the CRL set without also blocking all traffic to Google.

3. OCSP (online certificate status protocol):
This is an alternative to the CRL set that means the browser does not have to download data for all
revoked certificates in the world. Each certificate comes with an OSCP link, where the browser can ask
an “OSCP responder” (created by the CA) whether or not a given certificate is valid. The responder
gives a yes or no response, but it is signed by the responder so that the browser knows it is accurate.
But there are multiple problems with this:

• The OSCP responder often goes offline and does not respond. Because the browser does not want
to completely block traffic because the responder is offline, they let traffic through when there is
no response, which means that an authoritarian regime could use revoked certificates simply by
blocking the responder.

• This is also a privacy violation, because the OSCP responder (and therefore the CA) now knows
what websites you are trying to visit at what times.

• This significantly slows down the browser if the OSCP responder is sometimes slow.

Because of these problems, OSCP is on its way out, and people primarily use the CRL set (which is
being optimized).

4. Short-Lived Certificates:
This is an idea that Professor Boneh has been trying to push for a while, but has not been widely
adopted. The idea is that certificates expire after around four days, rather than a year or three months.
The main issue with this is that it would require the CAs to be more active and that websites would
have to be a lot more active in asking for a certificate renewal every four days automatically. (It’s
another thing that would have worked better if we had started with it in the first place, but now is
harder to switch into.)

Negligent CAs:

What happens if a CA is negligent or compromised?

In 2011, there was a CA called DigiNotar that was hacked, and the adversary was able to get certificates
for URLs like *.google.com and gmail.com, which means it could essentially pretend to actually be those
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sites, and your browser would trust it because they had valid certificates.
As a consequence, the CA became untrusted by all browsers (certificates from that CA were no longer con-
sidered valid) and the company went out of business.

But since then, this has happened several times a year, where sometimes a CA issues bogus certificates.
What to do in this case is still a big research area, but there are two solutions that took hold:

1. pinning:
The browser ships with a list of allowable CAs for some domains (for example, gmail.com is pinned
to the GTS CA, so a certificate for gmail.com from a different CA is considered invalid).
If a browser receives a certificate from an invalid CA, it rejects the certificate and sends a report to
one of the pinned CAs that this other CA has been compromised.

2. certificate transparency (CT):
The idea is that there are a handful of public CT logs, and each time a CA generates a new certificate,
it publishes that certificate on two of the logs. It then receives an SCT (signed certificate timestamp)
from each of the logs, and includes that in the certificate. Browsers only accept certificates that have
two valid SCTs in them. Then, the site admin for each website periodically scans the CT logs to make
sure there are no bogus certificates issued for its website.

This is the end of Part 2 of the course.

Now we are on part 3 of the class, which is about protocols.

We begin with ID protocols.

Definition 85. The setup of an ID protocol is the following:

• A setup algorithm G outputs a pair (SK, V K), giving SK to the prover and V K to the verifier.

• SK is a secret key belonging to the prover, and V K may or may not be secret, depending on the
protocol.

• The prover, using SK, sends a single message to the verifier.

• The verifier outputs accept if the prover has shown they are the correct person, and reject

otherwise.

Examples: (these are called friend-or-foe applications)

• using a physical key to enter a locked door
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• using a key fob to remotely unlock your car

• using your card to try to access your bank account at an ATM

• using a password login to tell a website who you are, after connecting via a protocol like HTTPS

For an ID protocol, there are three levels of security:

1. direct attacker: This is an attacker that has no information about the prover. They may have VK
if VK is public. For example, an attacker that breaks into a locked door using a lock pick.

2. eavesdropping attacker: This is an attacker that listens to a few conversation between the prover
and the verifier, and then tries to convince the verifier. For example, we can think of an adversary that
listens to the signals sent by your car fob when you are remotely unlocking your car, and then tries to
use that to unlock your car door.

3. active attacker: This is an attacker that queries the prover and then tries to impersonate the prover.
For example, an attacker that puts up a fake ATM at a shopping mall, and then uses the data collected
from the fake ATM to try to connect to someone’s bank account at a real ATM.

Basic Password Protocol v0:

If PWD is some finite set of passwords, then we can have the following password protocol:

• The setup algorithm G picks a password p randomly from PWD and sets SK = V K = p. (Here,
V K is also secret.)

• The prover sends over SK.

• If the verifier gets a message that equals p, they accept, and otherwise they reject.

Problem with this protocol: The password V K must be kept secret. If it is stored in the clear on the server,
then if the server is ever compromised, all the passwords are revealed. So, we have...

Basic Password Protocol v1:

If PWD is some finite set of passwords and H is a one-way hash function, then we can have the following
password protocol:

• The setup algorithm G picks a password p randomly from PWD and sets SK = p and V K = H(p).
(Here, V K is also secret.)
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• The prover sends over SK.

• The verifier computes the hash of the message they receive. If it equals V K, they accept, and
otherwise they reject.

This means the database only needs to store hashed passwords, so if the database is revealed the passwords
are not automatically revealed, and because the hash function is a one-way function, an adversary does not
get the passwords from their hashes.

Problem with this protocol: weak passwords
The top 10 most used passwords, as of 2018, are:

1. 123456

2. password

3. 1223456789

4. 12345678

5. 12345

6. 111111

7. 1234567

8. sunshine

9. querty

10. iloveyou

And a dictionary of 360, 000, 000 words covers about 25% of the passwords used on the internet.

About 3% of people use 123456 as their password. This means an adversary that has a list of usernames for
the site and tries the online dictionary attack, where they go through their list and try 123456 as the

password for each username, will get the password in an average of 33 tries.

This problem can be mitigated by things like IP-based rate limiting, where they limit the amount of login
tries per second from the same IP address. But there is an even worse problem!

Offline-based dictionary attack

If the attacker gets a single V K = H(p) from the server, they can run through their entire dictionary and
hash each word until they find a match (without interfacing with the server). This takes O(|dictionary|).

For example, there is a tool called John the ripper that will scan through all possible 7-letter passwords and
then the 360,000,000 word dictionary in a few minutes, and recover 23% of passwords from their hash.

But, if the attacker gets the entire table of hashed passwords, they can attack everyone’s password at once!
For example, in 2012, LinkedIn’s table of 6 million passwords, which were hashed using SHA1, was exposed.
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In 6 days, 90% of the passwords were exposed using this attack.

What the attacker does is the following: For every word w in the dictionary, check if H(w) appears anywhere
in the table. Using fast lookup, this check takes O(1) time, so revaling the passwords of the entire dictionary
takes O(|dictionary|+|table|), which is very fast.

To fix this, we have:

Basic Password Protocol v2: using a public salt

If PWD is some finite set of passwords and H is a one-way hash function, then we can have the following
password protocol:

• The setup algorithm G picks a password p randomly from PWD and a random salt S. Then, they
set SK = p and V K = S,H(S, p). (Here, V K is also secret.)

• The prover sends over SK.

• The verifier computes H(S, p). If it equals V K, they accept, and otherwise they reject.

This means that now the offline dictionary attack runs in O(|dictionary| ·|table|), because now the hash of
each password is different for each user, since each user has their own public salt. This means the adversary
has to recompute all the hashes with the given user’s salt, which slows down their attack.

To hash the passwords, we want to use a slow, space-hard hash function, so that the dictionary attacks
cannot run quickly.

For a slow hash, we can use hashes like PBKDF2, which essentially runs SHA-256 multiple times on the
password (it hashes the password and the salt, then hashes the output of that, then hashes the output of
that, and so on). We use enough iterations of SHA-256 that it takes, for example, 0.1 seconds to verify.

Since the server is only hashing one password, the server is not significantly slowed down when verifying a
user’s password, but since someone running the dictionary attack is hashing millions of passwords, this slows
them down.

The problem is: the server trying to verify the user’s password is probably running on an Intel processor.
Here, most of the processor is dedicated to cache, and not to trying to compute SHA-256. An attacker could
build a custom ASIC processor that is just devoted to computing hashes, and it would run much faster (on
the scale of 50,000 times faster). (The bitcoin mining industry taught us how to do this.)

A better approach is scrypt, which is a hash function that takes a lot of time and a lot of memory to evaluate.
This means that a custom processor that is built just for compute speed would be limited by the amount of
memory it has, and it is difficult to build a custom processor that would compute these hashes significantly
faster than the commodity CPUs.

This was all security against a direct attacker. We will now look at security against eavesdropping.

In this model, the adversary is given V K (if it is public) and a transcript of interactions between an honest
prover and the verifier. They are trying to impersonate the prover (convince the verifier that they are actu-
ally the prover.)
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Clearly, our previous password protocol was insecure here! Instead, we consider a:

One-Time Password Protocol

This uses a pseudorandom function F (such as AES).

• The setup algorithm G picks a random key k. Then, they set SK = (k, 0) and V K = (k, 0). (Here,
V K is also secret.)

• The prover sends over F (k, i) (where i is initialized to 0 and increments over time).

• The verifier computes F (k, i) (they store their local copy of i and also increment over time). If
this matches what the prover sent, they accept. Otherwise, they reject.

Then, an eavesdropper who knows F (k, i) for any set of i’s cannot compute F (k, i + 1) without knowing
both k and i, so they cannot imitate the prover.

Theorem 86. If F is a secure pseudorandom function then this protocol is secure against eavesdropping.

For example, the little RSA SecurID key uses AES-128 on a 128-bit key and a 32-bit counter, which incre-
ments every sixty seconds.
(The time-based one-time password (TOTP) won over the user-input based one, which would increment
every time the user pressed a button, because there were more problems with the user-input based one.)

The verification key has to be kept secret, because it contains the user’s secret key and the counter, so if it
is compromised, the prover can be spoofed directly.

The S/Key system

This is a system (which is not used today) which generates one-time passwords without needing a secret
verification key.
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We have a hash function H, where H(n)(x) means we hash x, and then hash the output, and then hash
that output, n times.

• The setup algorithm G picks a random key k. Then, they set SK = (k, n) and V K = H(n+1)(k)

• The prover sends over H(n)(k) and then decrements n.

• The verifier computes the hash of the input. If that matches V K, they accept and set V K to be
the input, and otherwise they reject.

We can see that even if we steal V K, we can see that V K is the hash of the next password, so since we can’t
get the password from the hash, the adversary still can’t imitate the prover.

Theorem 87. If the hash function H is a one-way function even when applied n times, S/Key is secure
against eavesdropping even if the eavesdropper gets access to V K.

But SecurID has an unlimited number of authentications, and the key being sent over is much shorter, so it
is used over S/Key.
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Lecture 15: Authenticated Key Exchange

Last class, we learned to protect against a direct attacker and an eavesdropping attacker. Today, we will
learn to protect against active attacks.

Definition 88. In a active attack on an ID protocol, an adversary can query the prover as many times
as they want. Then, once it is done, it begins talking to the verifier, and it is successful if it is able to
convince the verifier that it is actually the prover.

Note that these are two separate steps; the adversary only starts talking to the verifier once it is done talking
to the prover.

Example 89. A real-world example of this is if a scammer puts up a fake ATM in a shopping mall, then
uses the credit card data collected from the fake ATM to try to access someone’s real bank account.

Online, phishing sites are an example of this. They present a fake password login page to the user
(prover) and once the prover has entered their password data, the adversary can use that to log into the
prover’s account in the actual website.

All basic password protocols we have discussed so far are vulnerable to active attacks.

We will now look at protocols that are not vulnerable to these attacks:

MAC-based challenge response

This is a protocol that is secure against active attacks but requires the verifier to have a secret V K.

We have a message authentication scheme (SMAC, VMAC), with keyspace K and message space M. Then,
we do the following:

• The setup algorithm G picks a random key k ∈ K. Then, they set SK = k and V K = k.

• The verifier sends over a random message m ∈ M, which we call a challenge.

• The prover sends back t = SMAC(k,m).

• The verifier computes VMAC(k,m, t), and accepts if VMAC accepts, and otherwise rejects.
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Theorem 90. This protocol is secure against active attacks given that V K is secret, (SMAC, VMAC) is
a secure MAC, and M is bigger than {0, 1}128.

This is because we can see that an adversary who queries the prover a bunch of times just gets the tag for
a bunch of messages, and by MAC security as long as the verifier prompts them with a message they have
not seen before, they will not be able to generate a valid tag for it.

We can see that if the verification key is revealed, then the adversary knows k for the MAC, and then
they can easily impersonate the prover. For similar reasons, this is less secure when k is a human-selected
password, because then it is vulnerable to the dictionary attack on k.

But, it has the benefit of allowing a short m and t. A CryptoCard is a physical card where the prover gets a
challenge m, enters it into the card, and the card gives them a response t which they enter into their terminal
to be let in. This uses only 8-character long messages and tags.

In order to allow for a public V K, we have the Signature-Based Challenge Response.

We have a signature scheme (Gsig, Ssig, Vsig), with message space M. Then, we do the following:

• The setup algorithm G calls Gsig and outputs the relevant SK and V K, where V K is the public
key for the signature scheme.

• The verifier sends over a random message m ∈ M, which we call a challenge.

• The prover sends back t = Ssig(SK,m).

• The verifier computes Vsig(V K,m, t), and accepts if Vsig accepts, and otherwise rejects.
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Theorem 91. This ID protocol is secure against active attacks given that our signature scheme is a
secure signature scheme and M is bigger than {0, 1}128.

But, we can see that the tag t can no longer be as short (it must now be along the lines of 20 bytes). This is
because the V K for a signature scheme is public, so if the tag space is small, the adversary can brute-force
all possible tags and check it themselves using the verification algorithm.

This is currently implemented in ...

The U2F Standard (and WebAuthn)

(Here, U2F stands for universal second factor).

We have a U2F token talking to a service, and their communication goes through a brower. Our goals are:

• the browser malware cannot steal user credentials

• U2F should not enable tracking users across sites

• U2F uses counters to defend against token cloning

The U2F protocol has two parts. First, a device gets registered with the service:

• The U2F token has a secret key SK that it keeps across websites and interactions.

• The service sends over a challenge m and an ID (such as the site URL), through the browser.

• The U2F token uses SK and ID (and some sort of PRF) to generate SKID and PKID, as the key
pair for a signature scheme.

• The U2F token sends PKID, S(SKID,m), and a handle to the service through the browser.
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• Then, the service registers your handle with PKID (i.e. stores it in its databases so it recognizes you
as a user next time)

What is the handle for?

The reason there is a new public key for each website is to prevent tracking across websites, because if you
had a public key that stayed constant across websites, it would be very easy to tell what sequence of websites
you were registered for.

But the small devices don’t have enough memory to store a separate key for each website you need to visit.
So instead they are stored on the server - each handle is actually an encryption of SKID using SK, so that
if the U2F token gets back the handle, they can re-gain SKID.

(Though SKID was computed from SK and ID, this process used some amount of randomness or auxiliary
information, so the handle could also just contain this information. The point is primarily that it contains
the information so that someone with SK can compute SKID, but no one else can.)

Then, when you want to authenticate yourself to the server, you do the following:

• The service sends over the ID, a challenge m, and the handle, to the U2F token through the browser.

• The U2F token uses this to recompute SKID and sends back S(SKID,m) and a counter.

• Then, the service can verify that this is a valid signature, using PKID.

This is publicly available as WebAuthn, and you should use this on websites that you are making. Primarily,
the users who have U2F tokens are employees at larger companies, because end-users are mostly unwilling
to buy their own U2F token.

This is the conclusion of our section on ID protocols, which we should think of as protocols that are useful
when the adversary cannot interact with the user during the impersonation attempt.

Now, we are going to talk about authenticated key exchange protocols.

Again, we want Alice and Bob to generate a shared key for the sake of communication. The protocols we
saw so far were secure against eavesdropping, but not against a person-in-the-middle attack.

An Authenticated Key Exchange is supposed also to be secure against active adversaries.

Definition 92. An active adversary is an adversary that has complete control of the network. This
means they can modify, inject, and delete packages on their way from one user to another.

Moreover, in this setting, we also have corrupt users which are controlled by the adversary, and we want to
make sure that doing a key exchange with a corrupt user does not compromise the security of a key exchange
with a not-corrupt user.
(If Alice does a key exchange with Mr. EvilMan before she does a key exchange with Bob, her key exchange
with Bob should not be compromised because of her previous conversation.)

All authenticated key exchange (AKE) protocols require a trusted third party to certify user identities. We
talked about this in the previous lectures: there are two types of trusted third parties.
Offline trusted third parties are only contacted during registration and revocation, and we called them Cer-
tificate Authorities.
Online TTPs are part of every key exchange protocol and end up knowing every symmetric key, so they are
not widely used.

64



CS 255 (Stanford, taught by Professor Dan Boneh) Aditi Talati Winter 2022

The Syntax of an AKE

We have Alice and Bob. Alice has SKa, certa, and PKCA (the public key of the certificate authority). Bob
has SKb, certb, and PKCA. Then, at the end of the protocol, either Alice has (k,Bob), as in she has the
shared secret key and knows she’s talking to Bob, or she has fail. Similarly, Bob now either has (k,Alice),
or he has fail.

The following is an informal definition of AKE security:

Suppose Alice successfully completes AKE and gets (k,Bob). If Bob is not corrupt, then:

Definition 93. If the AKE protocol has authenticity for Alice, either Bob received the shared key k
or no one received it. (The key could not have been shared with anyone else.)

Definition 94. If the AKE protocol has secrecy for Alice, then the shared key k looks indistinguishable
from random for the adversary, even if the adversary has seen shared keys that Alice generated with
other people or shared keys that Bob generated with other people.

Definition 95. If the AKE protocol has consistency, then if Bob successfully completes AKE it gets
(k,Alice).

But, there’s actually three levels of core security. These are the following:

Definition 96. An AKE has static security if it has authenticity, secrecy, and consistency.

Definition 97. An AKE has forward secrecy if it has static security, and moreover if the adversary
learns SKa at time T , then it cannot learn anything about Alice’s messages sent before time t.

Definition 98. An AKE has HSM security (where HSM stands for Hardware Security Module) if it
has forward secrecy and if an adversary queries an HSM and gets SKa n times, then at most n sessions
are compromised. (Having the secret key from n different timestamps does not reveal information about
the secret key at other timestamps.)

There is also a variance of AKE where only one side has a certificate:

The Syntax of One-Sided AKE

We have Alice and Bank. Alice has V KCA (the public key of the certificate authority). Bank has SKb, certb,
and V KCA. Then, at the end of the protocol, either Alice has (k,Bank), as in she has the shared secret key
and knows she’s talking to Bank, or she has fail. But Bank does not learn Alice’s identity - it now either
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has k, or it has fail.

Warning: These AKE protocols are extremely fragile. Do not try to design it yourself. In-
stead, just use the latest version of TLS.

Building Blocks of AKE

The certificate certb has PKb, and the bank has SKb.

We also have an encryption algorithm Eb(m, r) = E(PKb,m, r) where E is chosen-ciphertext secure.

And, we have Sa(m, r) = S(SKa,m, r) where S is a secure signature scheme.

Finally, we have the nonce space R, which is a large set, such as {0, 1}256.

Then, we can have the following simple one-sided AKE protocol:

• The Bank sends over r, which is sampled randomly from R and certb.

• Alice selects a random key k and sends over c = Eb(k, r).

• The Bank decrypts c and checks that the same r was received, and if so it keeps k as its secret
key.

• Meanwhile, Alice knows k because it generated k, and it knows Bank’s identity from the certificate.

Theorem 99. This simple one-sided AKE protocol has static security.

Informally, this means that if Alice and the Bank are not corrupt then we have secrecy and authenticity for
Alice.

Now we will look at some variants of this that are insecure.

Insecure Variant 1: r not encrypted.

• The Bank sends over r, which is sampled randomly from R and certb.

• Alice selects a random key k and sends over c = Eb(k) and r.
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• The Bank decrypts c and checks that the same r was received, and if so it keeps k as its secret
key.

• Meanwhile, Alice knows k because it generated k, and it knows Bank’s identity from the certificate.

This is not secure against replay attacks: if Alice uses the shared key later on to encrypt a message such
as “I am Alice, pay Eve $30” then Eve can save that ciphertext and replay it later to get the Bank to keep
sending Eve money.
In equations, if the above message is m, and our symmetric encryption scheme is Es, then Alice:

• gets r, certb

• sends c = E(k) and r

• is now authenticated and then sends Es(k,m) to the Bank to get it to send money to Eve

But, an eavesdropping adversary can then set up their own session with the Bank using the same secret key
as Alice: the adversary

• gets r′, certb

• sends c = E(k) and r′

• is now authenticated and then sends Es(k,m) to the Bank to get it to send more money to Eve

(where we see that the second step could not have been done in the secure version of AKE)

Here, note that each time Alice or the adversary has a separate conversation with the Bank, they are doing
it in a new session. Thus, unless the new session was set up using the same shared key as before, the replay
attack would not work.

Now, we will look at how the two-sided AKE works.

Simple Two-Sided AKE

Ingredients:

The certificate certb has PKb, and Bob has SKb. Similarly, certa has PKa and Alice has SKa.

We also have an encryption algorithm Eb(m, r) = E(PKb,m, r) where E is chosen-ciphertext secure.
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And, we have Sa(m, r) = S(SKa,m, r) where S is a secure signature scheme.

Finally, we have the nonce space R, which is a large set, such as {0, 1}256.

• Bob sends over r, which is sampled randomly from R and certb.

• Alice selects a random key k and sends over c = Eb(k, Alice). Alice also sends σ = Sa(r, c, Bob)
and certa.

• Bob decrypts c and checks that the name encrypted matches the name on the certificate. Then,
he checks that σ is a valid signature on (r, c, Bob), and if that is the case, he accepts that Alice is
the person he is talking to and k is the shared key.

• Meanwhile, Alice knows k because she generated k, and she knows Bob’s identity from his certifi-
cate.

Theorem 100. This is a statically secure AKE.

Again, we will look at small changes to this protocol that make it insecure.

Insecure Variant: encrypt r instead of Alice

• Bob sends over r, which is sampled randomly from R and certb.

• Alice selects a random key k and sends over c = Eb(k, r). Alice also sends σ = Sa(r, c, Bob) and
certa.

• Bob decrypts c and checks that it contains the correct r. Then, he checks that σ is a valid signature
on (r, c, Bob), and if that is the case, he accepts that Alice is the person he is talking to and k is
the shared key.

• Meanwhile, Alice knows k because she generated k, and she knows Bob’s identity from his certifi-
cate.

This is vulnerable to an identity misbinding attack.
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This works as follows:

• Bob sends over r, which is sampled randomly from R and certb.

• Alice selects a random key k and sends over c = Eb(k, r). Alice also sends σ = Sa(r, c, Bob) and certa.

• The adversary blocks this message, and instead sends over c, σ = Sevil(r, c, Bob) and certevil.

• Bob decrypts c and checks that it contains the correct r. Then, he checks that σ is a valid signature
on (r, c, Bob), and if that is the case, he accepts that Mr EvilMan is the person he is talking to and k
is the shared key.

• Meanwhile, Alice knows k because she generated k, and she knows Bob’s identity from his certificate.

How does this hurt you? For example, if you submit your homework assignment using this protocol, and
the adversary performs an identity misbinding attack, then Prof Boneh will think that the adversary has
submitted a homework assignment, and give him credit instead of you.

Note that putting Alice in the ciphertext instead of r protects against this, because if the adversary tries
to perform this attack, Bob will notice that there is a mismatch between the name on the ciphertext and
the name on the certificate being sent over, and reject.

Now, we return to the simple one-sided AKE. Note that we said this had static secrecy. But the problem is
that it does not have forward secrecy: every shared key k can be decrypted using the Bank’s (unchanging)
secret key SKb, so if the adversary steals SKb, they can get all past k’s and therefore read all past messages.

(This protocol was used in TLS 1.2 but was deprecated for TLS 1.3)

So, we can now look at a slightly modified version of this protocol that does have forward secrecy:

One-Sided AKE with Forward Secrecy

Along with the ingredients we had last time, we now have a public-key encryption scheme (Gen(), E,D).

• The Bank calls Gen() to generate (SK,PK).

• The Bank sends over PK, certb, and Sb(PK).

• Alice verifies that Sb(PK) is actually the public key signed using PKb. selects a random key k
and sends over c = E(PK, k).
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• The Bank computes k = D(SK, c), rejects if D rejects, and then throws away SK. Now the bank
knows k.

• Meanwhile, Alice knows k because it generated k, and it knows Bank’s identity from the certificate.

Since SK is deleted when the protocol completes, this has forward secrecy.

Insecure Variant: do not sign PK

• The Bank calls Gen() to generate (SK,PK).

• The Bank sends over PK and certb. (without any signature)

• Alice selects a random key k and sends over c = E(PK, k).

• The Bank computes k = D(SK, c), rejects if D rejects, and then throws away SK. Now the bank
knows k.

• Meanwhile, Alice knows k because it generated k, and it knows Bank’s identity from the certificate.

This completely exposes the shared key k, because an attacker can just block the bank’s first message and
send over their own PK ′ with the bank’s certificate, and then it will be the adversary, not the bank, that
finds out k.
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But, the forward secrecy protocol is still not HSM secure. We can see that an adversary that makes a single
HSM query to get a signature on some PK ′ using SKb can now use that PK ′ to intercept any AKE that
anyone is trying to have with the Bank.

So now we will look at a protocol that also provides HSM security:

Simple One-Sided AKE with HSM Security

Along with the ingredients we had last time, we now have a public-key encryption scheme (Gen(), E,D).

• Alice calls Gen() to generate (SK,PK), and sends over PK.

• The Bank generates a random shared key k and sends over c = E(PK, k), certb, and σ = Sb(PK, c).

• Alice checks that the σ is actually a signature on PK, c from the Bank (using PKb from the
certificate), and then computes k = D(SK, c). Then, it deletes SK. She now knows k and that
she is talking to the Bank.

• Meanwhile, the Bank knows k because it generated k.
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Since SKb is now being used to sign an ephemeral PK, c that Alice sends, a new HSM query needs to be
made each time we are setting up a session, so the adversary can no longer make a single HSM query to
break all of HSM security.

The last problem is this is not private: since the bank’s certificate is sent in the clear, an eavesdropper can
see exactly who Alice is talking to. But this is easily fixed: we just need to modify the protocol to also
encrypt certb and σ.

In practice, we use DHAKE. This is very similar to the above, except instead of using ElGamal as the
encryption scheme, we directly use Diffie-Helman, as below:
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Lecture 16: Zero-Knowledge Protocols

More Variants of AKE (that we won’t explain here)

• AKE based on a shared secret (either a high-entropy secret, or a low-entropy secret like a password):
used to get forward secrecy by generating a new shared secret from the previous one

• deniable AKE:
In the previous version of AKE, Alice gets the bank’s signature on her public key and ciphertext, which
means she can prove that the bank was talking to her. In deniable AKE, we want both parties to be
able to deny that they had communicated with her - no signature on non-secret information

TLS 1.3 Session Setup

A simplified version of the “full handshake” is the following, where the client and the server are trying to
communicate:

1. the client sends a clientHello message which includes all the cipher suites it supports, and a Diffie-
Hellman public key

2. the server sends a serverHello message which includes a cipher suite selected from the ones the client
sent, their Diffie-Helman public key, and the server’s encrypted certificate

3. the client sends a “finished” message to indicate that the session has been set up correctly

(Then the session has been set up, both parties have the shared secret key, and the client can now send
HTTP requests to the server.)

But this means we need three rounds of communication before the client can even send an HTTP get request,
which will not be practical in high-latency networks. There’s a new field of crypto called crypto in space
where they come up with workarounds for issues like this, so that we can communicate with devices on the
moon, for example.

The finish state for this is a hash of the entire transcript so far, so that they agree that they have received
the same keys and the setup was successful.

The reason we have a set of cipher suites that the client can support is because TLS is meant to be a
worldwide protocol. So all browsers are required to support AES-GCM, but a Russian server might prefer
to use the Russian standard GOST if that is an option, and an older server might prefer to use an older
encryption scheme.

Session Setup from Pre-Shared Keys

Let us say that a server and browser have almost completed an old session, but would like to resume this old
session later. Since the server would require a lot of storage to save every prior session it’s had, it instead
has the browser store the previous session data. The way this works is the browser saves the preSharedKey
which is generated from the current shared key. Then, the server sends the browser a newSessionTicket

which contains all the session data, including the preSharedKey, encrypted under the server’s main secret
key.
The browser cannot read the newSessionTicket because it does not have the server’s secret key. But it
can store it for the server. Then, the next time it is trying to connect to the server and resume its old
session, it sends the newSessionTicket with its clientHello. Then, the server can decrypt this to get
all the old session data, and the browser and server can engage in an abbreviated handshake to generate
the new shared key from the preSharedKey (for forward secrecy) rather than having to engage in the full
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Diffie-Helman handshake.

PSK 0-RTT (pre-shared key zero roundtrip time)

People really dislike the TLS round trips because since each ad has to load separately, the ads take a longer
time to load, so they become less effective.

This is a feature that allows you to complete a GET request, for example, before the TLS handshake is
completed. It can be beneficial in speeding things up, but it’s also very dangerous.

You do the same process as before (with a pre-shared key), but in the ClientHello, you also send the 0-RTT
application data, which in this case would be the GET request. Then, as the handshake is being done, the
server can also complete this request, so it can send you the requested data the moment the handshake is done.

The 0-RTT application data is encrypted using kCE , which is the client early key-exchange key. This is
derived from the previous shared key and the ClientHello.

BUT the 0-RTT application data is very vulnerable to replay attacks, because someone could continually
replay the ClientHello with the encrypted application data without getting to the rest of the handshake.

So, we have to make sure that the application data does not have side effects; for example, if it was a request
to Amazon to buy a book, then someone could use the replay attack to make you buy 50 copies of the book.
We generally only allow application data that is in the form of a GET request (banning POST requests, for
example) but there are still GET requests that could have dangerous side effects when replayed.

Now, we will turn to talking about zero-knowledge protocols. This is one of the two “bonus topics” of the
course.

Zero-Knowledge Protocols

First, we will review what the class NP is.

Definition 101. We say that a language L is in NP if L is a set of strings (L ⊆ {0, 1}∗) and there exists
a machine M that runs in polynomial time such that a string x is in L if and only if there exists some
witness w ∈ {0, 1}∗ such that M(x,w) = 1.

That is M is a verification machine for L; for every statement x in L, they can provide a valid “witness” w
that causes M to believe it actually is in L, and moreover x that is not in L can forge such a valid witness.

Example 102. The example we will discuss is the equality of Dlog. Specifically, we have a cyclic group
G of prime order q. Then the language we care about is

LEDL =
{
(g, h, gα, hα) ∈ G4 | α ∈ Zq, g, h ̸= 1

}
.

This is the set of four-tuples g, h, u, v) such that Dlogg u = Dlogh v.
Then, we can see that given the witness α, it is easy to check that (g, h, u, v) is in the language; we just
check if u = gα and v = hα.

Definition 103. A zero-knowledge proof system for a language L ∈ NP is a pair of probablistic
polynomial time (PPT) algorithms P and V such that the prover P takes in (x,w) and the verifier V
just takes in x.

Then, the prover and the verifier are going to send messages back and forth, and after that, the verifier
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outputs yes or no. So the prover is trying to convince the verifier that x is in the language.

Moreover, a zero-knowledge proof system has the following properties:

Definition 104. A proof system is complete if for all x,w such that M(x,w) = 1 (so x is in the
language) then

Pr
[
(P (x,w) ↔ V (x)) = yes

]
= 1,

or the verifier outputs yes after interacting with a prover that has x,w.

Definition 105. A proof system is sound if x ̸∈ L, then no cheating prover can convince the verifier
that x ∈ L. So when x ̸∈ L, for all provers P̂ (even ones that run in exponential time) and all w,

Pr
[
(P̂ (x,w) ↔ V (x)) = yes

]
should be negligible.

Then, a trivial proof system is one in which P just sends w to V , and then V can verify for themselves
whether M(x,w) is in the language. Since M runs in polynomial time, V can just run M(x,w) and see if it
accepts or rejects. But this is not a zero-knowledge proof because of the third property.
The third property states that the verifier should learn nothing about w besides the fact that x ∈ L. To
define this formally, we first say that transcript(P (x,w) ↔ V (x)) is the sequence of messages sent back
and forth between the prover and the verifier. This is a random variable, because P and V are randomized
machines.

Definition 106. An honest verifier zero knowledge (HVZK) proof system is one in which there exits
a PPT algorithm S called the simulator, where for all x ∈ L, the distribution

{
S(x)

}
is computationally

indistinguishable from the distribution
{
transcript(P (x,w) ↔ V (x))

}
.

What does this mean? Well we want the verifier to learn nothing about w. So we want everything in its
conversation with P to be something it could have generated on its own given the knowledge that x ∈ L,
because that means P isn’t telling it anything besides this knowledge. So we ask whether a simulator that
also runs in PPT and does not know w could generate the same probability distribution of transcripts.

Example 107. A zero-knowledge proof of Where’s Waldo means you have to convince the verifier you
know where Waldo is without revealing to the verifier anything about Waldo’s location. So you enter
a room, the verifier checks that you have brought nothing with you, and you’re given scissors and the
Where’s Waldo page. You cut out Waldo, burn the rest of the page, and hand the verifier the picture of
Waldo.

Example 108. A story from The Lady Tasting Tea was that the lady in the cafeteria where Fischer
(the statistician) was working claimed that it was always important to pour the milk before the tea when
making tea. Fischer wanted to test whether she could really tell the difference between the milk and the
tea, so what he did was turn around and make tea, randomly deciding whether to pour the milk first or
the tea first. Then he asked her to taste it and guess which was poured first.

If she really could tell the difference, she should be able to guess it right with probability 1, and if she
couldn’t, she would be able to guess it correctly with probability 1/2. If we repeat this experiment 10
times, and Fischer only believes she actually knows the difference if she never guesses incorrectly, then we
can see that if she didn’t really know the difference, she would only be able to trick him with probability
2−10.

Moreover, Fischer learns nothing through this conversation; using the formal definition, their transcript
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would just be him handing her the tea and her guesses on which item was poured first. But if she did
actually know the difference, her guesses would be correct every time, and he could predict them because
he knows which item he actually did pour first. But he learns nothing about how to actually taste the
difference between the two teas.

Example 109. We have the following zero-knowledge proof system for LEDL.

The prover P knows (g, h, u, v, α) and the verifier knows (g, h, u, v).

The prover choses a random ρ from Zq (where q is the order of our group G). Then, the prover sends
R1 = gρ and R2 = hρ.

Then, the verifier is going to choose a random “challenge” c ∈ Zq and send that to the prover.

Finally, the prover returns z = cα+ ρ ∈ Zq, and the verifier accepts if gz = ucR1 and hz = vcR2.

Note: in this protocol, the verifier has no secrets, so we call this a public coin protocol.
Now, we will prove that this is an HVZK protocol.

1. completeness:
If (g, h, u, v) ∈ LEDL and specifically u = gα and v = hα so M(g, h, u, v, α) accepts, then we can see
that

gz = gcα+ρ = (gα)cgρ = ucR1,

and the parallel statement is true for hz so the verifier will accept.

2. soundness:
If (g, h, u, v) ̸∈ LEDL, so u = gα and v = hβ where α ̸= β, then for all malicious provers P̂ , the
transcript will look like:

(R1 = gρ1 , R2 = hρ2 , c, z),

where the prover does not control c. Then

Pr[V accepts] = Pr[z = αc+ ρ1 and z = βc+ ρ2] ≤ Pr

[
c =

ρ1 − ρ2
β − α

]
.

Note that we as the verifier choose c randomly after ρ1, ρ2, α, β are set, and that α ̸= β so we aren’t

dividing by zero. So the probability of this being true is exactly 1/q .

3. HVZK:
If (g, h, u, v) ∈ LEDL, the simulator S needs to output transcript(P (x,w) ↔ V (x)). But the simulator
doesn’t need to generate the items of the transcript in the same order as the prover and verifier. So
what the prover does is:

(a) choose c, z randomly from Zq.
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(b) set

R1 =
gz

uc
, R2 =

hz

vc
.

So the reason the simulator can “cheat” is they can pick R1, R2 after c. We can see that R1 = gρ and
R2 = hρ where ρ = z − cα, c is chosen at random from Zq, and z is selected such that the above two
conditions hold.
So this simulated transcript has the same probability distribution as the actual transcript, and the
verifier must therefore learn nothing about α.
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Lecture 17: Zero Knowledge-Based Signature Schemes

Soundness vs. Knowledge

In a normal zero-knowledge proof, we prove to the witness that there exists a w such that M(x,w) =
1, so x ∈ L. But, what if V wants a proof that P actually knows what w is? That is, we can prove
soundness just by saying there is a witness, but not that the prover knows what the witness is. But a
zero knowledge proof of knowledge (ZKPK) system also involves the prover showing that they know what
w is.

Definition 110. A zero knowledge proof of knowledge system is one that has completeness,
honest verifier zero knowledge, and for any prover P̂ that can convince the verifier, the verifier can
“extract” w from P̂ .

Example 111. We will show a ZKPK proof of Dlog. Specifically, let G be a finite cyclic group of prime
order q. Then, let L be the language

L =
{
(g, h = gα) | α ∈ Zq, g ̸= 1

}
.

Then, showing that (g, h) is in the language is fairly trivial, because all pairs with g ̸= 1 are in the group.
But a ZKPK proof means the prover also convinces the verifier that they know what α is.

Schorr proof of knowledge of Dlog

The prover has (g, h = gα, α), while the verifier just has (g, h).
The prover chooses a random ρ from Zq. Then, the prover sends R = gρ to the verifier.
Then, the verifier chooses a random c from Zq and sends this to the prover.
The prover returns z = cα+ ρ ∈ Zq, and the verifier accepts if gz = R · hc.

Theorem 112. The Schorr proof is complete, HVZK, and knowledge-sound, so it is a zero knowledge
proof of knowledge system.

We can prove each of the three parts:

• completeness:
This follows from the fact that if h = gα, then

gz = gcα+ρ = gcαgρ = hcR.

• HVZK:
A simulator, given (g, h) must produce a transcript (R, c, z) where gz = R ·hc, and every R ∈ G, c ∈ Zq

is equally likely.

To do so, they choose z and c randomly from Zq, and then computes R as gz/hc. Then, they can
output (R, c, z).

So an honest verifier has the power to compute the transcript, so they learn nothing from the protocol.
(Note again that this is an honest verifier zero knowledge protocol, so a dishonest verifier might choose
c in such a way that they actually do learn something from the protocol.)
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• knowledge sound:

If a prover P̂ can convince V that (g, h) is in the language, we can build an extractor that extracts α
from P̂ .

This works as follows:

We have a P̂ that ouputs a randomly generated R. Then, we send a randomly generated challenge c1
and receive z1 such that gz1 = Rhc1 .

But, we also take a snapshot of the memory state of P̂ right before we send the challenge c1. Then,
once we are done with the first challenge, we can rewind P̂ to the previous state, where it has just sent R.

At this state, we randomly generate another challenge c2 and get back z2, such that gz2 = Rhc2 .

But then, we can see that gz1−z2 = hc1−c2 , and with high probability c1 ̸= c2, so then we can compute

α =
z1 − z2
c1 − c2

.

Thus, this is a proof of knowledge: if you can convince the verifier (g, h) is in the language, then the
extractor can extract α from you, so you must have known α.

(Note that a formal proof of this requires that even if the prover only works with non-negligible
probability, we can still extract α with high probability - this extractor does work in that situation,
but our proof above only shows that it works when the prover is always correct.)

But any public-coin protocol (where everything the verifier does is public) can be made non-interactive!

Fiat-Shamir Transform

Let us consider a “generic” public coin protocol, where the prover has (x,w) and the verifier has x. Then,
the prover sends over a randomly generated R, the verifier sends a randomly generated challenge c, and the
prover responds with z. Then, the verifier does some test on (R, c, z), and if the test passes, they accept.

So the only step the verifier really does here to make the proof interactive is generate c. So if we can have
the prover also pick the randomly generated c, they can eliminate the need for interaction in this proof.

So the prover and verifier are given a hash function H, which works as a pseudorandom generator. Then,
the prover does the following, given (x,w):

• randomly generate R

• generate c = H(x,R)

• generate z based on R and c

• send over π = (R, z)

For the verifier to accept, they can generate c = H(x,R), and then run the same test as before on (R, c, z).

The question of what hash function to use for this and how to prove it is secure is a pretty major topic, and
this will be covered further in CS 355.

But the reason this is interesting is once we have a non-interactive ZKPK, we can use this to build a digital
signature. Basically, the signature for this signature scheme is a proof that we know the secret key for a
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given public key. We do this by including the message within the hash, so that our c = H(x,m,R) instead
of just H(x,R).

Schnorr Signature Schemes

We have a cyclic group G of prime order q with generator g. Also, assume we have a hash function
H : G×M×G → Zq.
Then, our signature scheme (Gen, S, V ) is as follows:

• Gen() generates an α randomly from Zq and h = gα ∈ G. Then, SK = α and PK = h.

• S(SK = α,m) plays the role of the prover:

We generate ρ randomly from Zq and set R = gρ ∈ G. Then, we generate c = H(h,m,R) ∈ Zq, and
set z = cα+ ρ. We output (c, z).

(Note that outputting c and outputting R are equivalent; the optimized Schnorr signature outputs c.)

• V (PK = h,m, σ = (c, z)) plays the role of the verifier:

We generate R = gz/hc. Then, we check whether H(h,m,R) = c, and accept if it is.

Theorem 113. The signature scheme (Gen, S, V ) is secure assuming Dlog is hard in G and H is modeled
as a “random oracle.”

Note that this is dependent on R being randomly generated each time; if not, we can use the two signatures
to reveal α (as we did with the extractor). This is very easy to mess up, because even a small bias can
break security, so specs now say to choose ρ as a PRF applied to (SK,m). But in general, Schnorr is very
dangerous to implement yourself - it’s better to use a trusted library.
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