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Lecture 1: Introduction

This class is about Galois theory, which is the study of fields and their automorphism groups. We will focus
on specific automorphism groups which are interesting to us, and which we will call Galois groups.

We can think of these automorphisms as the symmetries of a given set. We care about symmetries that are
algebraic in nature. What are examples of such symmetries?

Example 1.1. An example common in algebra class is the dihedral group, or the symmetries of a
given regular polygon. For example, D3 is the set of symmetries of an equilateral triangle, which are all
compositions of reflecting the triangle across an axis or rotating it:

But we could also have simpler examples of symmetries, such as:

Example 1.2. There are only two symmetries of a stick figure, so the symmetry group is just S2:

The symmetries that are inherently familiar to us are derived from geometry, but as we built more abstract
algebraic structures, we also found arithmetic and algebraic symmetries, developing homomorphisms, ios-
morphisms, and automorphisms.

We can think of the automorphisms as algebraic symmetries.

As Grothendieck came around, he linked algebra and geometry, using Galois theory to solve many classical
problems such as: can we trisect an angle? can we solve a quintic?
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Example 1.3. If we consider the set{
x ∈ C

∣∣∣ x5 − 2x4 + x3 + x2 − x+ 1 = 0
}
,

we will find that it is a set of 5 elements whose symmetry group is D5. Meanwhile, the symmetry group
of {

x ∈ C
∣∣∣ x4 + x+ 1 = 0

}
is S4.

It is sort of unclear what the symmetry group of the above sets means in this context, and that is something
we will discuss more rigorously later. Right now the important question is: how does the first example relate
to D or the second example relate to rotations of □?

Maybe we can tie the roots of these polynomials to vertices of these polygons somehow...

With that broad introduction, we will move on to some definitions.

We should already know the definition of a field, but as a reivew...

Definition 1.4. A field F is a commutative ring with identity, such that all nonzero elements have
inverses. That is, it is a set with two operations, · and +, with the following properties:

• F,+ is an abelian group; that is:

→ a+ b = b+ a for all a, b ∈ F

→ a+ (b+ c) = (a+ b) + c for all a, b, c ∈ F

→ there exists 0 ∈ F such that a+ 0 = a for all a ∈ F

→ for all a ∈ F , there exists (−a) ∈ F such that a+ (−a) = 0

• a · b = b · a for all a, b ∈ F

• there exists 1 ∈ F such that 1 · a = a for all a ∈ F

• a · (b · c) = (a · b) · c for all a, b, c ∈ F

• for all a, b, c ∈ F , (a+ b) · c = a · c+ b · c.

• for all a ̸= 0 ∈ F , there exists a−1 ∈ F such that a · a−1 = 1

There are many examples of fields that we commonly work with:

Example 1.5.

• Q and finite extensions

• R and C (which are much harder to study than the rationals)

• Fp = Z/pZ, where p is prime

• Fq, where q is a prime power

• Qp, or the p-adic rationals

• Q(x),R(x) which are the fields of functions of Q[x] and R[x], respectively. these are known as
function fields of algebraic varieties

Note that fields are a special category of integral domains, which are a special category of commutative rings
with identity:
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This means that the theory of rings is very relevant to the theory of fields.

Remark 1.6. The ideals of fields are either {0} or the entire field F .

This means that the theory of ideals is trivial for fields. However, it is sometimes still useful to discuss ideals
of fields. For example, since we know that the kernel of a field homomorphism is an ideal and cannot contain
1, all field homomorphisms are injective.

Definition 1.7. The category of fields is the set of all fields (the objects in the category), along with
all homomorphisms between them (the morphisms).

Definition 1.8. A ring homomorphism is a map φ : R1 → R2 such that

• φ(a+ b) = φ(a) + φ(b) for all a, b ∈ R1

• φ(ab) = φ(a)φ(b) for all a, b ∈ R1

• φ(1) = 1 (this is not a requirement in D&F)

Definition 1.9. We say that Z is the initial object among rings, which means that for any ring R,
there is a unique ring homomorphism φ : Z → R.

Specifically, this is the homomorphism defined by φ(1) = 1, since then for any n ∈ Z, φ(n) must be
1 + 1 + · · ·+ 1︸ ︷︷ ︸

n times

by definition of a homomorphism.

Definition 1.10. We say that the characteristic of a field F , denoted ch(F ), is the smallest positive
n ∈ Z such that φ(n) = 0 in the above map, or 0 if no such n exists.

Note that the characteristic is either 0 or a prime p, since the kernel of our map is an ideal of Z, which means
it is either pZ or 0.
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Lecture 2: Examples of Fields

We actually already understand some concepts in Galois theory. For example, consider the complex numbers
C.

What are they?

One could say C is the smallest field extension of R containing i.

What is i?

It is a root of x2 + 1 = 0. (We will learn that C is a splitting field of x2 + 1 over R.)

But if you accept that x2 + 1 has 1 root, then we must be able to factor it as

x2 + 1 = (x− α1)(x− α2).

Thus, if it has one root, it must actually have two roots, α1 and α2, such that

α1 + α2 = 0

α1α2 = −1.

Then, i can be α1 or α2, but which is it?

You might say it doesn’t matter; we can all either of them i and the other one −i.

What do we mean when we say it doesn’t matter?

Well, if we want C to be the smallest field containing R and i, it should consist of all elements of the form
a+ bi, with a, b ∈ R.

But then,

(a+ bi)(c+ di) = ac+ bdi2 + (bc+ ad)i

= ac− bd+ (bc+ ad)i

since i2 + 1 = 0. But if we have j = −i then

(a+ bj)(c+ dj) = (a− bi)(c− di)

= (ac− bd)− (bc+ ad)i

= (ac− bd) + (bc+ ad)j,

so the structure of the field remains unchanged, and our choice of root doesn’t matter.

In other words,

φ :C → C
a+ bi 7→ a− bi

is a field isomorphism, which we call complex conjugation.

Additionally, we can see that φ2 = φ ◦ φ = id and φ |R= id |R . So we would say that the Galois group of{
x2 + 1 = 0

}
is S2 = Z/2Z. In this sense, the ambiguity of which choice of i is a feature, not a defect.

5



Math 121 Aditi Talati Summer 2022

Note that in the example we discussed last lecture:{
x5 − 2x4 + x3 + x2 − x+ 1 = 0

}
,

with D5 symmetry D, there might be symmetry between each point, but not between pairs of points.

Remember again that for a field F , all ideals are either {0} or F . This implies that if φ : F → R is a
homomorphism from any field to any ring, then since ker(φ) is an ideal of F , it must be 0 or F . But the
kernel cannot be F , since φ(1) = 1, so ker(φ) = 0 and φ is injective.

Also, remember that the characteristic of F is the smallest positive integer n such that

1 + 1 + . . . 1︸ ︷︷ ︸
n times

= 0 ∈ F,

or 0 if no such positive integer exists. Also, remember that if ch(F ) > 0 it must be a prime p. The first
isomorphism theorem gives us the following diagram:

where φ(Z) is an integral domain because it is a subring of F .

Also, remember that if R is a ring, then R× is the set of units of R, and it is a group under multiplication.

Let us look at some examples of finite fields.

We know that for any integer n, nZ is an ideal of Z. This implies that Z/nZ is a field if and only if nZ is
maximal. In Z, the maximal ideals are pZ where p is prime.

Thus, for any prime p, Fp = Z/pZ is a finite field of prime order. Note that F×
p includes all nonzero elements

of Fp, so F×
p (where the group operation is multiplication) is isomorphic to Z/(p − 1)Z (where the group

operation is addition). This implies that for any a ∈ F×
p , |a| | p− 1, so

ap−1 ≡ 1 (mod p),

which is Euler’s theorem.

Proposition 2.1. Let p be a prime. Then, if F is a field of order p, there is a unique isomorphism
Fp → F .

Proof. We know from the definition of characteristic that there is a unique homomorphism φ : Z → F .
Clearly, this cannot be injective, so there must be some prime q such that the kernel of φ is qZ and therefore
the image of φ is isomorphic to Z/qZ. But the image of φ must be some additive subgroup of (F,+) and the
only such additive subgroup of a prime group is the group itself. Thus, q = p, and we have an isomorphism
from Z/pZ to imφ = F .

Thus, the field of prime order p is unique up to isomorphism.
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Ok, so we have (unique) fields of prime order. Can we construct a field with 4 elements?

We know that a field with 4 elements would need a 0, 1 and two other elements. So let us say

F4 = {0, 1, a, b} .

Then, we need to define how these elements interact with our operators. Let us say we have the following
tables:

+ 0 1 a b
0 0 1 a b
1 1 0 b a
a a b 0 1
b b a 1 0

· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a b 1
b 0 b 1 a

Then, we can show that F4 is a field. We can see that (F4,+) ∼= (Z/2Z)× (Z/2Z) and (F×
4 , ·) ∼= Z/3Z. What

is left is to show the distributive property, which we can check manually.

It also turns out that if F is a field of order 4, there is an isomorphism F4 → F . But this isomorphism isn’t
necessarily unique, while in the prime case we knew our isomorphism was uniquely determined by φ(1) = 1.

Proof. Let us say that F is a field of order 4. Then, ch(F ) must be a prime factor of 4, so ch(F ) = 2. Thus,
in F , 1 + 1 = 0, and for all a ∈ F , a+ a = a(1 + 1) = 0.

We know that (F,+) must be a group of order 4. There are only two groups of order 4, up to isomorphism,
and since every element in F has order at most 2, we get that

(F,+) ∼= Z/2Z× Z/2Z.

Since F is a field, we know that
∣∣F×

∣∣ = 3, and since there is only one group of order 3, we get that
(F×, ·) ∼= Z/3Z.

Thus, up to isomorphism, F4 is the unique field of order 4.

Note that this isomorphism is not unique: φ : F4 → F4 defined by φ(1) = 1 and φ(a) = b is a valid non-
identity isomorphism.

But this the only other choice of isomorphism, because we must have φ(1) = 1 and then the other elements
are determined by our choice of φ(a), which must be either a or b. Thus, we can say that F4 has S2-symmetry.
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Lecture 3: Categories

Remember that we constructed C using the polynomial

x2 + 1 = (x− α1)(x− α2),

so that we knew α1 + α2 = 0 and α1α2 = −1.

We also saw that there is a nontrivial isomorphism φ : C → C, which fixes R and has the property that
φ2 = id.

Moreover, any isomorphism ψ : C → C that fixes R is either id or φ. This is because, for any α such that
α2 + 1 = 0, we can see that

ψ(α)2 + 1 = ψ(α2 + 1) = ψ(0) = 0,

so either

ψ(α1) = α2

ψ(α2) = α1

or

ψ(α1) = α1

ψ(α2) = α2,

using the fact that ψ is injective, so ψ(α1) ̸= ψ(α2).

Thus, the Galois group (of ambiguities) of C is Z/2Z.

Then, we can consider the field F2 = {0, 1}.
There are only four quadratic polynomials of this group:

x2, x2 + x, x2 + 1, x2 + x+ 1.

The first one has roots 0, 0, the second has roots 0, 1, the third has roots 1, 1 and the fourth has no roots.

But we can imagine that there are roots of x2 + x+ 1 somewhere out there. We can all these roots α1 and
α2, so that

x2 + x+ 1 = (x− α1)(x− α2).

This means that α1+α2 = 1 and α1α2 = 1. Moreover, we can see that since α2
1+α1+1 = 0, α2

1 = α1+1 = α2,
and similarly, α2

2 = α1.

Thus, we get the addition and multiplication tables

+ 0 1 α1 α2

0 0 1 α1 α2

1 1 0 α2 α1

α1 α1 α2 0 1
α2 α2 α1 1 0

· 0 1 α1 α2

0 0 0 0 0
1 0 1 α1 α2

α1 0 α1 α2 1
α2 0 α2 1 α1

So the smallest field consisting of F2 and the roots of x2 + x + 1 is F4. We call this the splitting field of
x2 + x+ 1 over F2, and similarly we call C the splitting field of x2 + 1 over R.
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We previously described our Galois groups with reference to polynomials. From now on, we will create field
extensions, as above, and define the Galois group with reference to that extension.

We denote a field extension as C/R or F4/F2. Then, we can say that the Galois group of C/R is S2 (with
the symmetry i↔ −i) and the Galois group of F4/F2 is also S2 (with the symmetry α1 ↔ α2 = α1 + 1).

In these symmetries, the field that we are given (or the field that we are using for the coefficients) must be
fixed. We call this the base field.

What do we mean by “symmetry” of an object? It is best to describe this using categories.

Definition 3.1. A category C consists of

(1) a class of objects for the category, and

(2) for every pair of objects A,B ∈ C, a set HomC(A,B) of morphisms in C (where morphisms are
maps from A to B)

(3) for every object A ∈ C, there exists a morphism 1A ∈ HomC(A,A), which we call the identity
morphism

(4) for every 3 objects A,B,C ∈ C, a function

◦ : HomC(A,B)×HomC(B,C) → HomC(A,C)

such that for all f ∈ HomC(A,B),

f ◦ 1A = f and 1B ◦ f = f.

Moreover, if we use the notation

A B
f

then for any

A B C D
f g h

we have that (h ◦ g) ◦ f = h ◦ (g ◦ f)

We will mainly focus on the category of rings, where the objects are rings, and the morphisms are ring
homomorphisms.

Definition 3.2. A function A B
f

is an isomorphism in C if there exists A B
f

such that g ◦ f = 1A and f ◦ g = 1B .

For some categories, the isomorphisms are bijective homomorphisms, but this is a more general definition.

Definition 3.3. An automorphism of A ∈ C is an isomorphism from A to A.

Remark 3.4. We denote the set of automorphisms of A ∈ C as AutC(A). This is a subset of HomC(A,A).

We can see that AutC(A) is a group under composition, since we are given that composition is associative
and the identity is 1A, and by the definition of an isomorphism, any f ∈ AutC(A) has an inverse.

It is also important to note that AutC(A) is not necessarily the entire set HomC(A,A).
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Example 3.5. Let C be the category of sets, where morphisms are functions between sets. Then, we
can have the set S = {1, 2} and the function f : {1, 2} → {1, 2} defined by

f(1) = 1

f(2) = 1.

Then, we have that f ∈ HomC(S, S) but f ̸∈ AutC(S).

Going back to the category of rings (which we denote Ring), we can consider the group Aut(C). This is an un-
countable group, because for any a ∈ C, f(x) = x+a is a valid automorphism. But if we look at the subgroup
of automorphisms of C which fix R, we get S2, so we have found some formal notion of the symmetries of C/R.

To generalize this concept, we can consider a category C and an object A ∈ C.

Definition 3.6. We can define the relative category CA of C over A.

Here, the objects of CA are the morphisms A B
f

for any B ∈ C. Then, the morphisms in

CA are maps from A B1
f1

to A B2
f2

. We can see that if we visualize this in the

commutative diagram:

B1 B2

A
f1 f2

g

that these are just the maps g ∈ HomC(B1, B2) such that f2 = g ◦ f1.

We will really only use this in the category of rings.

Definition 3.7. Let ι : K → F be a field homomorphism. Since K is a field, we know that ι is an
inclusion map.

Then, the Galois group of ι is a group of automorphisms in CK . This group is denoted Aut(F/K) or
Gal(F/K).

Concretely, Gal(F/K) is the set of g ∈ Hom(F, F ) such that the commutative diagram

F F

K

ι ι

g

holds.

Example 3.8. Tying this back to the beginning of this lecture,

Aut(C/R) ∼= Aut(F4/F2) ∼= S2.
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Lecture 4: The Field of Fractions and the Universal Property

In this course, we mainly care about the category of fields, which we call Fields. In this category, the objects
are fields and the morphisms are ring homomorphims.

We work similarly to last lecture. When we are interested in the roots of some polynomial f(x) ∈ K[x],
where K is a field, the relative category FieldsK has objects that are ring homomorphisms from K to any
field F , and the morphisms are again commuative diagrams:

F1 F2

K

The most important examples are when K ⊆ F , because then F is a field extension of K. But since any
field homomorphism is injective, we can factor ι : K → F into

K ∼= ι(K) ⊆ F,

so that F is a field extension of the image of K under ι, which is just isomorphic to K.

Example 4.1. We return to our familiar examples, R ⊆ C and F2 ⊆ F4. In the relative category FieldsR,
the morphisms from C to C are the maps g that make the following commutative diagram hold:

C C

R

g

But the only such maps are the identity and complex conjugation, as we showed before.

Similarly, we can see that there are only two morphisms from F4 to itself in the relative category FieldsF2
.

The most interesting field is Q.

What is Q?

It is the field of fractions of the most interesting ring Z.

Recall if R ⊆ F is a subring of a field then R must be an integral domain, since if R had zero divisors then
so would F .

But if R is an integral domain, is R a subring of a field?

It turns out the answer is yes, and in a canonical way (there is a minimal such field that is unique up to
isomorphism).

For any integral domain R, there is an injective homorphism i : R→ F , where F is a field, with the following
universal property:
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For any injective map j : R→ L, where L is a field, there is a unique k : F → L such that the diagram

F L

K
i

j

k

commutes.

From the universal property, we can see directly that F must be unique up to isomorphism. Say we have the
injective homomorphisms i1 : R → F1, i2 : R → F2, both with the universal property. Then, the universal
property tells us that there exists a unique f and g such that we get the following commutative diagram:

But we can see that this implies that g ◦ f ◦ i1 = i1, but the universal property applied to the following
commutative diagram:

F1 F1

K
i1

i1

1F

tells us that 1F is the unique map with the property that 1F ◦ i1 = i1, so g ◦ f = 1F . Similarly, f ◦ g = 1G,
so f and g are isomorphisms.
Ok, so we have shown that if there is a field F that has this universal property, it is unique up to isomor-
phism. But how do we know that such a field exists?

We can show that for any integral domain R, the universal property holds for the field of fractions of R.
That is, let

F =

{
a

b

∣∣∣∣ a, b ∈ R, b ̸= 0

}
/ ∼,

where we are modding out by the equivalence relation

a1
b1

∼ a2
b2

when a1b2 = a2b1.

Then, we will show that the universal property holds for i : R→ F , where i(a) = a
1 for all a ∈ R.

We want to show that for any injective homomorphism j : R → L, where L is a field, there is a map
k : F → L such that

F L

K
i

j

k

commutes.
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Let us think about how to construct this k. We know that k ◦ i(r) = j(r) for all r ∈ R, so for all r ∈ R,

k

(
r

1

)
= j(r).

But then since k is a field homomorphism, we can see that for any a
b ∈ F ,

k

(
a

b

)
= k(a)k

(
1

b

)
= k(a)k(b)−1 = j(a)j(b)−1.

So it is clear that k is uniquely defined, and it is easy to show from this that k is a homomorphism. To see
that it is well defined, note that if a1b1 ∼ a2

b2
then

k
(
a1
b1

)
k
(
a2
b2

) = j(a1)j(b1)
−1j(a2)

−1j(b2) = j(a1b2)j(a2b1)
−1 = 1

because a1b2 = a2b1.

Thus, for any integral domain R, the field of fractions of R is the field for which the universal property holds.

Remark 4.2. A common way of getting a ring homomorphism is by inclusion. If R ⊆ L for some field
L, then by the universal property, there exists a unique j : F → L such that the diagram

F L

K
i inclusion

j

commutes. Thus, j(F ) ⊆ L is a subfield of L containing R and it is the smallest such object.

Corollary 4.3. Any field contains an isomorphic copy of Q or Fp.

Proof. Remember that Z is the initial object of Ring, which means that for any field F , there exists a unique
homomorphism φ : Z → F , defined by setting φ(1) = 1.

Then, if φ is not injective, then by the first isomorphism theorem for rings, we know that

Z/ kerφ ∼= imφ ⊆ F.

But as we discussed before, if this map φ is not injective, then Z/ kerφ ∼= Fp for some prime p. Thus, F
contains an isomorphic copy of some Fp.

If φ is injective, then the universal property tells us that there exists a unique field homomorphism k such
that

Q F

Z
i

φ

k

commutes. But since k is a field homomorphism, we know it is injective, and therefore k(Q) ⊆ F is an
isomorphic copy of Q.
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Example 4.4. Remember that for an integral domain R, the universal property holds for the field of
fractions of R. So we have the following examples of integral domains and their corresponding fields for
which the universal property holds:

• Z → Q

• K[X] → K(x) (where K(x) is the field of rational functions of x with coefficients in K)

• K → K when K is a field

One important question of this class is: can you solve a given polynomial f(x) ∈ K[x]?

In K, the answer is sometimes yes, and sometimes no.

But we know that if we have a field extension F ⊇ K, there are more roots of polynomials in K[x].

Example 4.5. The polynomial x2 − 2 ∈ Q[x] has no roots in Q, but it does have the root
√
2 ∈ R.

Is there always a field extension F/K such that we can find α ∈ F with f(α) = 0?

Yes, we will show this soon.

If α1 ∈ F1/K is a root of f(x), and α2 ∈ F2/K is also a root of f(x), is there a relation between the two?

Yep, there is a canonical relation when f(x) ∈ K[x] is irreducible.

Theorem 4.6. Let f(x) ∈ K[x] be any irreducible polynomial. Then, there is a field extension F/K
and an element α ∈ F/K which is a root of f .

This extension has the following universal property: for any F ′/K and any α′ ∈ F ′/K where f(α′) = 0,
there is a unique commutative diagram

F F ′

K

that maps α to α′.

Note that the latter part implies (F/K,α) is unique up to isomorphism, by applying the universal property.

We will see that this theorem holds when we take F = K[x]/(f(x)), and then α is the equivalence class of
x in F .

Remark 4.7. If f(x) ∈ Q[x] is an irreducible of degree d, then it has d distinct roots in C.

Our convention is that if α is the root of f(x), then K(α) is the field generated by α over K, or the smallest
field extension of K that contains α.
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Lecture 5: Creating Field Extensions

We left off last lecture with the theorem:

Theorem 5.1. Let f(x) ∈ K[x] be any irreducible polynomial. Then, there is a field extension F/K
and an element α ∈ F/K which is a root of f .

This extension has the following universal property: for any F ′/K and any α′ ∈ F ′/K where f(α′) = 0,
there is a unique commutative diagram

F F ′

K

that maps α to α′.

We will now prove this.

Proof. Take F = K[x]/(f(x)), and let α be the equivalence class of x in F .

We are given that f(x) is irreducible. This means that (f(x)) is maximal, so K[x]/(f(x)) is a ring modulo
a maximal ideal, which is a field.

Moreover, we can see that α is a root of f because

f([x]) = [f(x)] = 0

because f(x) ≡ 0 (mod f(x)).

Then, we will show the universal property. We want a field homomorphism φ : F → F ′ that maps α → α′.
We will first consider the ring homomorphism σ : K[x] → F ′ defined by σ(g(x)) = g(α′). Then, we can see
that kerσ contains f(x), since f(α′) = 0 by definition, but it is not the entire ring K[x], since e.g. σ(1) = 1.
So kerσ must be (f(x)) since (f(x)) is a maximal ideal.

But the first isomorphism theorem tells us that there is an induced isomorphism K[x]/ kerσ→̃ imσ ⊆ F ′,
but this gives us our injective field homomorphism φ : F → F ′ (by applying the above isomorphism and
then an inclusion map into F ′). Moreover, we can see that φ(α) = φ(x) = σ(x) = α′, as we wanted.

Moreover, the uniqueness of this isomorphism follows from the fact that we can write any element of F as∑
i

ciα
i, ci ∈ K.

Then, if we have any homomorphism φ : F → F ′ where φ(α) = α′ and φ(c) = c for all c ∈ K, we can see
that this uniquely determines the image of all our elements, as

φ

∑
i

ciα
i

 =
∑
i

φ(ci)φ(α)
i

=
∑
i

ciα
′i.
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Example 5.2. We can now define C as the unique field generated by x2+1 over R. Much of mathematics
is centered around

Example 5.3. We can also defined F4 as the field generated by a root of x2 + x+ 1 over F2.

Corollary 5.4. There is a field F4 with |F4| = 4.

Proof. Note that x2 + x+ 1 ∈ F2[x] is irreducible. Then,

F4 = F2[x]/(x
2 + x+ 1)

is a field. We can see that it has order 4, because any polynomial f(x) ∈ F2[x] satisfies

f(x) = q(x)(x2 + x+ 1) + r(x),

where the degree of r(x) is at most 1, by the division algorithm.

The only polynomials in F2[x] of degree at most 1 are 0, 1, x, x + 1. These are all distinct mod x2 + x + 1,
because otherwise x2 + x+ 1 would divide a lower-degree nonzero polynomial.

Thus |F4| = 4.

Definition 5.5. Let F/K be any field extension, and S ⊆ F be an arbitrary subset. Then, K(S) ⊆ F
is the smallest subfield of F containing K and S and it is called the subfield of F generated by S over
K.

We can think of this as the intersection of all subfields of F containing both K and S, since the interesection
of subfields is a subfield.

With this definition of subfields generated by S, note that for the F defined in Theorem 5.1, we can write

F = K(α) = K({α}).

Moreover, for any F ′/K and α′ ∈ F ′ with f(α′) = 0, the subfield K(α′) ⊆ F ′ is isomorphic to F .

Let F/K be any field extension. Let α ∈ F be any element and consider the map σ : K[x] → F defined by
σ(x) = α. Then, we have one of two cases:

(1) kerσ = 0 (σ is injective)
In this case, α is said to be transcendental over K because there is no polynomial f(x) ∈ K[x] such

16
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that f(α) = 0. We get the commutative diagram

K(x) F

K[x]

σ

where K(x) is the rational functions over K. Since K(x) and K(α) both satisfy the universal property,
we get that K(x) ∼= K(α).

(2) kerσ ̸= 0
Since K[x] is a PID, we get that kerσ = (f(x)) for some unique irreducible monic polynomial f(x), so
we get the commutative diagram

K[x]/(f(x)) F

K[x]

φ

and K(α) ∼= K[x]/(f(x)). In this case, f(x) is called the minimal polynomial of α over K, and α is
algebraic over K.

Remember that everything is relative to the field we are working in:

Example 5.6. The element πi ∈ C is transcendental over Q, but algebraic over R (since x2 + π2 is the
minimal polynomial for πi over R).

17
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Lecture 6: Automorphisms of Field Extensions

Remember from last lecture, if F/K is a field extension and α ∈ F , then either α is transcendental over K,
and we have the commutative diagram

K(x) F Q F

K[x] similar to Z

x 7→ α 1 7→ 1

or α is algebraic over K and we have the commutative diagram

K[x]/(f(x)) F Z/pZ F

K[x] similar to Z

x 7→ α 1 7→ 1

where f(x) is the unique monic irreducible polynomial that makes the diagram hold, and is called the mini-
mal polynomial of α over K.
So, either K(α) ∼= K(x) or K(α) ∼= K[x]/(f(x)).

Definition 6.1. A field extension F/K is called algebraic if every α ∈ F is algebraic overK. Otherwise,
F is transcendental.

Now we can try to say something about the symmetries of K(α) over K when α is algebraic.

Theorem 6.2. The number of automorphisms of K(α) that fix K, or
∣∣Aut(K(α)/K)

∣∣ equals the number
of distinct roots of f(x) in K(α).

Corollary 6.3. Aut(K(α)/K) is a finite group.

We will look at a few examples of this before actually proving the theorem.

Example 6.4. Consider the polynomial

f(x) = x3 − 2 ∈ Q[x].

This is irreducible by Eisenstein’s criterion.

Then, if α is a root of this polynomial, the only automorphism of Q(α)/Q is the identity.

Why?

The roots of f(x) in C are 3
√
2, ω 3

√
2, and ω2 3

√
2, where ω = e2iπ/3. We get the same field Q[x]/(x3 − 2)
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no matter which root we choose as α, so

Q(α) ∼= Q(
3
√
2) ⊆ C.

But clearly neither of the other roots are in this field, since Q( 3
√
2) ⊆ R and cannot have imaginary

numbers.

Example 6.5. Consider the polynomial

f(x) = x4 + 1 ∈ Q[x].

Then, we can see that this is irreducible because f(x) is irreducible iff f(x+ 1) is irreducible, and

f(x+ 1) = x4 + 4x3 + 6x2 + 4x+ 2,

which is irreducible by Eisenstein’s criterion.

If α is a root of f(x), then there are exactly 4 distinct automorphisms of Q(α)/Q. This is because the
four roots of x4 + 1 are the following:

so if we take α to be any of these, we can express the other three roots as powers of α.

Given these examples, we turn to actually proving the theorem.

Proof of Theorem 6.2. We can write
f(x) = cnx

n + · · ·+ c0,

where c0, . . . , cn ∈ K. Moreover, let {α1, . . . , αd} be the set of roots of f(x) in K(α).

Then, we can see that for any automorphism φ : K(α) → K(α),

f(φ(α)) = cn(φ(α))
n + · · ·+ c0

= φ(cn)φ(α
n) + · · ·+ φ(c0)

= φ(cnα
n + · · ·+ c0)

= φ(0) = 0.

Thus, φ(α) must equal αi for some i ∈ 1, . . . , d.

Moreover, given any root αi, there is a unique automorphism φ : K(α) → K(α) such that φ(α) = αi, since
by the universal property there must be a unique φ such that the following commutative diagram holds:

K(α) K(α1)

K

φ

So there is a bijection of sets

Aut(K(α)/K) −→ {α1, . . . , αd}
φ 7−→ φ(α)

19



Math 121 Aditi Talati Summer 2022

Example 6.6. Continuing off of Example 6.5, we can see that

Aut(Q(α)/Q) = {φ1, φ3, φ5, φ7} ,

where
φ1(α) = α, φ3(α) = α3, φ5(α) = α5, φ7(α) = α7.

We can manually check that this implies φ2
3(α) = φ2

5(α) = φ2
7(α) = α, so all of these automorphisms

have order at most 2 and
Aut(Q(α)/Q) ∼= Z/2Z× Z/2Z.

The most important trivial observation in Galois theory is:

Any morphism i : K → F makes F a vector space over K; we define scalar multiplication as

a · b = i(a)b for a ∈ K, b ∈ F.

When viewing F in this way, we call it a K-algebra. If we have the following commutative diagram,

F1 F2

K

φ

then φ : F1 → F2 is a morphism of K-algebra.

Some nontrivial consequences are that there is no field |F | = n when n = 6, 10, 12, 14, . . .

Theorem 6.7. If F is a finite field then |F | = pn, where p is prime and n is a positive integer.

Proof. Recall that all fields contain either an isomorphic copy of Fp where p = ch(F ) or Q if ch(F ) = 0.
Since F is finite, it must be the case that ch(F ) > 0, so F contains an isomorphic copy of Fp.

Then, since F is finite it must be a finite-dimensional vector space over Fp. Thus, F ∼= Fnp , where n = dimFp F .
(Here, ∼= means a vector space isomorphism, but it doesn’t really matter, as long as we have a bijection.)

Definition 6.8. If F is a finite-dimensional vector space over K, F/K is called a finite extension.

In this case, the dimension of F over K is called the degree of F/K and is denoted [F : K].

The most important example of a finite extension is F = K(α) where α is algebraic and f(x) is the
corresponding minimal polynomial. Then, F is a finite extension of K.

Proposition 6.9. In this case, [F : K] = deg(f(x)).

Proof. Remember that F = K(α) ∼= K[x]/(f(x)). Then, K[x]/(f(x)) is a vector space over K with basis{
1, x, x2, . . . , xd−1

}
where d = deg(f(x)). This set spans K[x]/(f(x)) because by the division algorithm, any

polynomial in K[x] is equivalent, mod f(x), to a polynomial of degree at most d. It is linearly independent
because if it wasn’t then we’ve found a smaller polynomial with α as a root, contradicting the fact that f(x)
was the minimal polynomial.
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Lecture 7: Algebraic Extensions

Let K → F be a homomorphism between fields. Remember from last lecture that this gives F the structure
of a vector space over K.

Example 7.1. Let us say K = F = Q(t), which is the field of fractions of Q[t].

(1) If we have the homomorphism ι1 : Q(t) → Q(t) defined by ι1(t) = t, then this homomorphism
makes F a 1-dimensional vector space over K.

(2) If we have the homomorphism ι2 : Q(t) → Q(t) defined by ι2(t) = t2, then this homomorphism
makes F a 2-dimensional vector space over K.

ι2(K) = Q(t2) F = Q(t)

K = Q(t)

ι2

inclusion

In other words, [Q(t) : Q(t2)] = 2, and t is algebraic over Q(t2) with minimal polynomial x2 − t2 ∈
Q(t2)[x].

The most important special case is when F = K(α), and α is algebraic over K with minimal polynomial
f(x). We showed last lecture that in this case, F is d-dimensional over K, where d = deg(f(x)).

Example 7.2. We return to our familiar examples.

We know that C = R(i), with minimal polynomial x2 + 1 = 0.

This means C is a vector space over R with basis {1, i}, so if we express elements of C as vectors with
respect to this basis, we can express the multiplication map ×i : C → C as(

0 −1
1 0

)
∈ GL2(R)

since it maps 1 to i and i to −1.

Similarly, F4 = F2(i), with minimal polynomial x2 + x+1 = 0. Expressing F4 as a vector space over F2,

we can see that the multiplication map F4 F4
×i

is(
0 1
1 1

)
∈ GL2(F2)

since it maps 1 7→ i and i 7→ i+ 1.

Definition 7.3. We say that F/K is algebraic if every α ∈ F is algebraic over K.

Definition 7.4. We say that F/K is finite if the vector space F over K is finite-dimensional.

The degree [F : K] of F/K is the dimension of the vector space F over K.
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Definition 7.5. We say that F/K is finitely generated if F = K(S) for some finite subset S ⊆ F .

If F = K(α), where α is algebraic over K, it is clear that F/K is finite and finitely generated. Is it necessarily
algebraic?

Example 7.6. We can define the subset Q ⊆ C as

Q = {α ∈ C | α is algebraic over Q} .

Then, Q is a subfield of C (we will prove this soon).

Then, by definition Q/Q is algebraic. However, we claim that Q/Q is not finite.

For any integer d > 0, there is an irreducible polynomial f(x) ∈ Q[x] of degree d. (e.g. take f(x) = xd−2).

But then if α ∈ C is any root of f(x), we know that [Q(α) : Q] = d and Q(α) ⊆ Q. Since this is true for
any degree d, [Q : Q] cannot be finite.

Even if Q/Q is not finite, is it finitely generated?

Example 7.7. We know that Q(t)/Q is finitely generated because it is generated by t. But it is not
finite, because Q[t] ⊆ Q(t) and

{
1, t, t2, . . .

}
∈ Q[t] are linearly independent, so Q[t] is infinite dimen-

sional, and Q(t) must be as well.

Q(t)/Q is not algebraic since it is not finite.

Proposition 7.8. Let F/K be a field extension and α ∈ F be an arbitrary element. Then, α is algebraic
over K if and only if K(α)/K is finite.

Proof. For one direction, we know that if α is algebraic over K, then it has minimal polynomial f(x) ∈ K[x],
and we already showed that this implies [K(α) : K] = deg f(x), which is finite.

For the other direction, assume thatK(α)/K is finite and has dimension d. Then, we know that
{
1, α, . . . , αd

}
cannot be a linearly independent set, so there must exist some c0, . . . , cd ∈ K such that

c0 + c1α+ · · ·+ cdα
d = 0,

and this gives us a polynomial in K[x] which has α as a root.

Corollary 7.9. If F/K is finite, it must be algebraic.

Proof. We know that for any α ∈ F , K(α) ⊆ F , so K(α)/K is finite. From the above proposition, this
implies α is algebraic.

Thus, every α ∈ F is algebraic, so F is algebraic.

Say we have the field extensions K ⊆ E ⊆ F . This gives us the three vector spaces F/K, F/E, and E/K.
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If F/K is finite then F/E is finite and E/K is finite. The latter is because E/K is a subspace of F/K, the
former is because K ⊆ E so if a set S spans F/K it must also span F/E.

Does the converse also hold?

Theorem 7.10. The dimension [F : K] = [F : E][E : K].

Proof. The dimension of a vector space is the cardinality of its basis. So we can take an arbritrary basis
{αi}i∈I of E/K and

{
βj
}
j∈J of F/E. Then, we claim that

{
αiβj

}
i∈I,j∈J is a basis if F/K.

For any η ∈ F , we can express η =
∑
j ejβj with all ej ∈ E, since

{
βj
}
is a basis for F/E. Then, since {αi}

is a basis for E/K, we can express each ej as ej =
∑
i cijαi, where every cij ∈ K. Combining this, we get

η =
∑
i,j

cijαiβj ,

and therefore
{
αiβj

}
spans F/K.

To show that
{
αiβj

}
is a linearly independent set, say we have some cij ∈ K such that∑

i,j

cijαiβj = 0.

But we can express this as ∑
j

∑
i

cijαi

βj = 0,

and since
{
βj
}
are linearly independent over E, we know that each

∑
i cijαi must equal 0. But since {αi}

are linearly independent over K, we get that each cij = 0, so
{
αiβj

}
is a linearly independent set over K.

Thus,
{
αiβj

}
i∈I,j∈J is a basis of F and [F : K] = [F : E][E : K].

Corollary 7.11. F/K is finite if and only if F/K is finitely generated by algebraic elements over K.

So knowing that a field extension is finite is equivalent to knowing that it is finitely generated and algebraic!

Proof. We know that if F/K is finite, then by the corollary to Proposition 7.8, it is algebraic. Moreover, if
it is finite then we can find a finite basis, and the basis must generate all of F/K, so it is finitely generated.

For the other direction, we know that if F/K is finitely generated by algebraic elements, then we can express
F as

[K(α1, . . . , αn),

where each αi is algebraic over K. Then, for each 1 ≤ ℓ ≤ n, we can define

Fℓ = K(α1, . . . , αℓ),

and we can see that Fℓ+1 = Fℓ(αℓ+1) for all ℓ. This gives us the chain of field extensions:

K = F0 ⊆ F1 ⊆ · · · ⊆ Fn = F,

where each extension in the chain is finite, because the dimension of Fℓ+1/Fℓ is just the degree of the minimal
polynomial of αℓ+1 over Fℓ. So by Theorem 7.10, we get that

[F : K] =

n−1∏
ℓ=0

[Fℓ+1 : Fℓ],
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and since [Fℓ+1 : Fℓ] ≤ [K(αℓ+1) : K] for all ℓ, we get that

[F : K] ≤
n∏
ℓ=1

[K(αℓ) : K],

which is finite.

Returning to Example 7.7, we see that Q/Q is algebraic and not finite, so it cannot be finitely generated.

Corollary 7.12. If α, β ∈ F are algebraic over K, then α+ β, αβ, and α−1 are also algebraic.

Proof. We know that K(α) and K(β) are both finite extensions of K, so K(α, β) must also be a finite
extension of K. But α+ β, αβ, and α−1 are all elements of K(α, β), so they must be algebraic over K.

Thus, we can see that Q ⊆ C is a subfield.

Let us say that α has minimal polynomial of degree d1 and β has minimal polynomial of degree d2 over K.
We know that K(α, β)/K has dimension at most d1d2. Moreover, by the following diagram,

K(α, β)

K(α) K(β)

K

we can see that [K(α, β) : K] must be a multiple of both d1 and d2.
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Lecture 8: Straightedge and Compass Constructions I

Given two points on a plane (say (0, 0) and (1, 0) in R2) and a straightedge and compass, let’s try to do
some constructions.

To make a perfect triangle, we already have two points, and we can find the third point by finding an
intersection of the circle centered at (0, 0) and containing (1, 0) and the circle centered at (1, 0) and containing
(0, 0):

Note that this is a 3-gon, and 3 = 22
0

+ 1.
Then, to make a perfect square, we can find (2, 0) by drawing the circle centered at (1, 0) and passing
through (0, 0) (in purple). Then, we know that the other two points of this square are at the intersection of
the circle and the vertical line passing through (1, 0) which we can draw by finding the intersection of the
circle centered at (0, 0) and passing through (2, 0) and the circle centered at (2, 0) and passing through (0, 0)
(in green).

This is a 4-gon, and 4 = 22.
It is also possible (but very difficult) to construct a pentagon in this way. A hexagon is also constructible,
just by making 6 triangles.

Note that 5 = 22
1

+ 1 and 6 = 2
(
22

0

+ 1
)
.

Can we make a 7-gon?
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It turns out we cannot construct a 7-gon in this way, or an 11-gon, or a 13-gon. We can construct a 17-gon,
and Gauss was able to create a construction, but we cannot construct a 19-gon or a 23-gon.

It is posisble to construct a 257-gon or a 65537-gon. But no other examples of constructible p-gons, for prime
p, are known.

Is there a pattern here? It turns out that for a regular p-gon to be constructable, p must be a Fermat prime,
of the form 22

n

+ 1. We will prove this later in the course.

Let’s bisect an angle.

This allows us to go from an n-gon to a 2n-gon.

What about trisecting an angle?

For any finite subset E ⊆ R2 define C(E) to be the set of circles in R2 with center p ∈ E and radius |p− q|
for some q ∈ E, and define L(E) to be the set of lines in R2 joining distinct points p, q ∈ E.

Definition 8.1. A point p ∈ R2 is constructible if there is a sequence

p0 = (0, 0), p1 = (1, 0), p2, . . . , pn = p

with the following property:
Let Ei = {p0, . . . , pi} for every i ≤ n. Then, for each i, the point pi is either

(1) the intersection of two lines in L(Ei−1)

(2) an intersection of a line in L(Ei−1) and a circle in C(Ei−1)

(3) an intersection of distinct circles in C(Ei−1)

Definition 8.2. A real number α is constructible if (α, 0) is constructible.

Theorem 8.3. If α is constructible then it should be algebraic over Q and [Q(α) : Q] = 2r for some r.

Proof. Set p = (α, 0). By definition, there is a sequence

p0, . . . , pn = p

with the above properties. Say that for each i, pi = (αi, βi).

Let F0 = Q, Fi+1 = Fi(αi+1, βi+1) ⊆ R for i ≥ 0. We claim that [Fi+1 : Fi] is either 1 or 2; that is, if
Fi+1 ⊋ Fi, then it is just a quadratic extension.

To prove this, we will consider the point pi+1 = (αi+1, βi+1) and the set Ei of points added before this. We
know that it is either (1) the intersection of two lines in L(Ei), (2) an intersection of a line in L(Ei) and a
circle in C(Ei), or (3) an intersection of distinct circles in C(Ei).
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Remember that the equation for a line between two points (a, b) and (a′, b′) is

(x− a)(b′ − b) = (y − b)(a′ − a).

Thus, for all lines in L(Ei), the equation for the line is of the form

λx+ µy = ν, λ, µ, ν ∈ Fi.

Moreover, the equation for a circle centered at (a, b) and with radius r =
√

(a− a′)2 + (b− b′)2 is

(x− a)2 + (y − b)2 = r2,

so for all lines in C(Ei), the equation for the line is of the form

x2 + y2 + fx+ gy + h = 0, f, g, h ∈ Fi.

Now, we can go through our three cases for point pi+1.

(1) If pi+1 is the intersection of two lines, then we know that (αi+1, βi+1) is the solution to the linear
equations {

λ1x+ µ1y = ν1

λ2x+ µ2y = ν2.

But this means that we can express αi+1 and βi+1 as a linear combination of elements in Fi, which
means αi+1 and βi+1 are already in Fi, and [Fi+1 : Fi] = 1.

(2) If pi+1 is the intersection of a line and a circle

then we know that (αi+1, βi+1) is the solution to the equations{
x2 + y2 + fx+ gy + h = 0

λx+ µy = ν.

By substituting an expression for x in terms of y (or y in terms of x) into the first equation, we get
a quadratic whose coefficients are in Fi and whose solution is either αi+1 or βi+1. And once we have
gotten one of the two, we have a linear equation to get the other, so [Fi+1 : Fi] ≤ 2 (it could be 1 in
the case where our quadratic equation already has roots in Fi).

(3) If pi+1 is the intersection of two circles

then (αi+1, βi+1) is the solution to the equations{
x2 + y2 + f1x+ g1y + h1 = 0

x2 + y2 + f2x+ g2y + h2 = 0.
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But by subtracting the second equation from the first, we can see that this is equivalent to the system
of equations {

x2 + y2 + f1x+ g1y + h1 = 0

(f1 − f2)x+ (g1 − g2)y = (h2 − h1),

and this reduces to the second case, so [Fi+1 : Fi] ≤ 2.

Since at each step, [Fi+1 : Fi] = 1 or 2, and [Fi+1 : Q] = [Fi : Q][Fi+1 : Fi], we can see by induction that
[Fi : Q] is a power of 2 for all i, and specifically that [Fn : Q] is a power of 2. Then, since α ∈ Fn, we can
see that [Q(α) : Q] must be a factor of [Fn : Q] and therefore must also be a power of 2.

Example 8.4. We know that x3−2 is irreducible over Q, by Eisenstein’s criterion. So [Q( 3
√
2) : Q] = 3,

which is not a power of 2, so 3
√
2 cannot be constructed.

One standard problem is: given a cube, can we construct a cube with twice the volume?

This tells us the answer is no, because we cannot construct an edge with side length 3
√
2.

Using this, we can return to our question of trisecting an angle.

Corollary 8.5. The angle π
3 cannot be trisected.

Proof. Assume we can trisect π/3. So we can construct the following diagram:

Zooming in on the smallest angle, which has degree π/9, we can see that we can construct
(
cos

(
π
9

)
, 0
)
as

the blue point in:

By Theorem 8.3 we can see that this implies α = cosπ/9 is algebraic, and if the minimal polynomial for α
over Q has degree d, d must be a power of 2.

But the cosine sum formula tells us us that

cos(3θ) = 4 cos3 θ − 3 cos θ
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for any angle θ. Plugging in θ = π/9, we get that

1

2
= 4α3 − 3α.

But this means that α is a root of the polynomial

8x3 − 6x− 1,

or that 2α is a root of
f(x) = x3 − 3x− 1.

But f(x) is irreducible in Q; we can see this by the rational root theorem or by seeing that it has no integer
roots and applying Gauss’s Lemma.

So [Q(2α) : Q] = 3, and since Q(2α) = Q(α), [Q(α) : Q] = 3. But 3 is not a power of 2, and we have reached
a contradiction. Thus, we cannot trisect π/3.

An aside on Gauss’s Lemma:

Lemma 8.6 (Gauss’s Lemma). Let R be a UFD and F its field of fractions. Then, f ∈ R[x] is irreducible
if and only if it is irreducible in F [x].

(The following proof is thanks to Victor Yin.)

Proof. First, if f is reducible in R[x] then it is clearly reducible in F [x], so one direction is clear.

For the other direction, suppose f is reducible in F [x], so f = gh where g and h have positive degree.

Let c1 ∈ R be the lcm of the denominators of the coefficients of g(x), and let c2 ∈ R be the lcm of the
denominators of the coefficients of h(x). Then, if we define g′ = c1g and h′ = c2h, we get that

c1c2f(x) = g′(x)h′(x),

where both g′(x) and h′(x) are elements of R[x].

Note that we can assume without loss of generality that the gcd of the coefficients of g′(x) is 1, since if not
we can divide g′(x) by this gcd and multiply h′(x) by the gcd to get a product of the same form where the
gcd of the coefficients of g′(x) is actually 1.

Then, note that since R is a UFD, c1c2 has a unique prime factorization. Take any prime p that is a factor
of c1c2. Since p is a factor of g′(x)h′(x) it must be a factor of one of the two, and since g′(x) has no constant
factors, we get that (

c1c2
p

)
f(x) = g′(x)

(
h′(x)/p

)
,

where h′(x)/p is still an element of F [x]. Repeating this process inductively, we get that

f(x) = g′(x)

(
h′(x)

c1c2

)
,

where g′(x) and h′(x)/(c1c2) are both elements of R[x].

Thus, if f is reducible in F [x], it is also reducible in R[x], and we are done.

29



Math 121 Aditi Talati Summer 2022

Lecture 9: The Splitting Field

We begin with a brief review of some previous lecture content. For any field K and irreducible polynomial
f(x) ∈ K[x], we know how to construct the field extension K(α)/K, where α is a root of f(x).

Moreover, we know that there is a bijection between the set Aut(K(α)/K) and the distinct roots of f(x) in
K(α).

In Example 6.4, we considered the polynomial f(x) = x3 − 2 ∈ Q[x], and found that if α is a root of f(x),
then

∣∣Aut(Q(α)/Q)
∣∣ = 1. We will see that Q(α) is not a splitting field of f(x) over Q.

In Example 6.5, we considered the polynomial f(x) = x4 + 1 ∈ Q[x], and found that if α is a root of f(x),
then

∣∣Aut(Q(α)/Q)
∣∣ = 4. We will see that Q(α) is a splitting field of f(x) over Q.

Definition 9.1. Let f(x) ∈ K[x] be a (not necessarily irreducible) polynomial of degree d. Then F/K
is a splitting field of f(x) over K if

(1) f(x) splits completely in F [x]; that is

f(x) = c

d∏
i=1

(x− αi) ∈ F [x]

and

(2) F = K(α1, . . . , αd), so the roots of f(x) in F generate F/K.

Theorem 9.2. For any f(x) ∈ K[x], we can construct its splitting field F/K. Furthermore, if d =
deg f(x), then [F : K] ≤ d!

Note that F/K tends to have many self-symmetries; we saw above that Q(
√
i)/Q has many self-symmetries.

Proof. First, we will construct this splitting field, by induction on the degree d.

If f splits completely in K[x] then we can take F = K, so that [F : K] = 1 ≤ d! and we are done. (Note
that this covers our base case of when deg f = 1.)

Otherwise, let g(x) be an irreducible factor of f(x), such that g(x) has degree greater than 1. Then, we
know we can construct the field extension E/K, where E = K(α) such that g(α) = 0. Then, in E[x], we
can write

f(x) = (x− α)h(x)

for some polynomial h(x) ∈ E[x]. But then the degree of h(x) is less than the degree of f(x), so by our
inductive assumption, we can find a splitting field F/E of h(x).

Then, F contains α, and it contains all roots of h(x), so it contains all roots of f(x). Moreover,

F = E(α2, . . . , αd) = K(α, α2, . . . , αd)

since it is a splitting field of h(x) over E = K(α). So, F is a splitting field of f(x) over K.

Moreover, [F : K] = [F : E][E : K]. By our inductive assumption, [F : E] ≤ (d − 1)!, and since we know
that [E : K] = deg g(x) ≤ d, we get that [F : K] ≤ d!
So the splitting field exists and has our desired dimension.
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Note that for [F : K] to be exactly d!, f(x) must be irreducible over K, and then h(x) must be irreducible
over E, and so on.

Moreover, this splitting field is unique up to isomorphism over K. We will actually prove a more general
statement.

Theorem 9.3. Let φ : F→̃F ′ be a field isomorphism. Then, for any polynomial f(x) ∈ F [x], let f ′(x)
be the image of f with φ applied to the coefficients. If E is a splitting field for f(x) over F and E′ is a
splitting field for f ′(x) over F ′, φ extends to the isomorphism σ : E→̃E′.

Pictorially, we have the diagram

E E′

F F ′φ

σ

where φ and σ are both isomorphisms.

Proof. This means that if f splits completely in F , then f ′ splits completely in F ′, and we can have E = F
and E′ = F ′, and we are done.

We will show the case where f does not split completely in F via induction on the degree n of f .
At a base case, when n = 1, then there must be a root α of f(x), then φ(α) is the root of f ′(x). So we have
E = F and E′ = F ′, so we are done.

Then, for the inductive step, we have the inductive assumption that the theorem statement is true for any
field F , polynomial f , and isomorphism φ, where the degree of f is at most k. We would like to show that
it holds for f of degree k + 1, where f does not split completely in F .

But we know that this means there is some irreducible factor p(x) of f , where p(x) has degree at least 2. Let
p′(x) be the image of p(x) under our isomorphism; remember that this is also an irreducible factor of f ′(x).
Then, we know that if α is a root of p(x) and β is a root of p′(x), then we have the induced isomorphism

F (α) F ′(β)

F F ′

σ1

φ

where σ1 is the map extending φ and setting σ1(α) = β. But then, we know that in F (α)[x], there exists
some polynomial h(x) such that f(x) = (x − α)h(x) ∈ F (α)[x]. Similarly, f ′(x) = (x − β)h′(x), where
h′(x) = σ1(h(x)). We can see that E/F (α) is a splitting field for h(x) and E′/F ′(β) is a splitting field for
h′(x). Then, since h(x) has degree at most k, we can apply our inductive assumption to induce another
isomorphism:

E E′

F (α) F ′(β)

F F ′

σ1

φ

σ

But this is exactly what we wanted, so we are done!

Of course, by applying isomorphisms from F to itself that map f(x) to itself, we can see that any way of
constructing this splitting field is equivalent.
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Corollary 9.4. Any two splitting fields for f(x) ∈ F [x] are isomorphic.

Moreover, we have the following theorem, which can be proved in the same way as the above:

Theorem 9.5. For any polynomial f(x) ∈ K[x], the splitting field F/K of f(x) is the unique field with
the property that, for any L/K, if f(x) splits in L[x] then there is a homomorphism F → L over K.
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Lecture 10: Examples of Splitting Fields

Let’s return to Example 6.4.

We showed that if α is a root of f(x) = x3 − 2, then Q(α) has no other roots of f(x). Thus, Q(α) is not the
splitting field of f(x). Specifically, we can see that

f(x) = (x− α)(x2 + αx+ α2) ∈ Q(α)[x].

Since Q(α) has no other roots of f(x), these factors must be irreducible over Q(α).

Then, let β be a root of x2 + αx+ α2, and define F = Q(α, β). Then, F also contains the last root of this
polynomial. In this case, the last root is α− β, but we can also see that in general if we have one root of a
quadratic, we must be able to factor it into the product of two linear polynomials, and therefore also have
the second root.

Thus, F is the splitting field of f(x), and

[F : Q] = [F : Q(α)][Q(α) : Q] = 6.

We can also consider F as a subfield of C. We know that in C, the three roots of x3− 2 are 3
√
2, ω 3

√
2, ω2 3

√
2,

where ω is the primitive cube root of unity, or e2iπ3 = −1
2 + i

√
3
2 .

We know from the definition of splitting field that F ∼= Q( 3
√
2, ω 3

√
2, ω2 3

√
2). In this case,

Q(
3
√
2, ω

3
√
2, ω2 3

√
2) = Q(

3
√
2, ω) ⊆ C.

And there are multiple isomorphisms of F , such as

a 7−→ ω
3
√
2, b 7−→ ω2 3

√
2, or

a 7−→ 3
√
2, b 7−→ ω

3
√
2.

We can go back to looking at the symmetries of splitting fields.

Challenge 10.1. Convince yourself that:

(1) When F is the splitting field of f(x) = x4+1 over Q, Aut(F/Q) ∼= Z/2Z×Z/2Z (all automorphisms
have order 2).

(2) When F is the splitting field of f(x) = x3 − 2, Aut(F/Q) ∼= S3. (Note that the automorphism
group of the splitting field of a cubic must be a subgroup of S3, since it acts on the roots of f(x).)

A useful observation is that:

For any degree-d polynomial f(x) ∈ Q[x], f has roots α1, . . . αd in C, by the fundamental theorem of algebra.
In other words, f(x) splits completely in C[x]. So the splitting field of f(x) is isomorphic to the subfield

Q(α1, . . . , αd) ⊆ C.

Example 10.2. The splitting field of x4 + 1 over Q has degree 4.

What is the splitting field of x4 + 2 over Q?

Take a root ω of x4 + 1:
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Then, the roots (in C) of x4 + 2 are 4
√
2ω, 4

√
2ω3, 4

√
2ω5, and 4

√
2ω7.

Thus, the splitting field is
F = Q(

4
√
2ω,

4
√
2ω3,

4
√
2ω5,

4
√
2ω7) ⊆ C.

But since ω =
√
2
2 (1 + i), we can see that F ⊆ Q( 4

√
2, i).

Note that

√
2 =

(
4
√
2ω

)3

4
√
2ω3

,

so
√
2 ∈ F . Then,

i = ω2 =

(
4
√
2ω

)2

√
2

,

so i ∈ F , and then ω =
√
2
2 (1 + i) ∈ F , and finally 4

√
2 = ( 4

√
2ω)/ω ∈ F . So, Q( 4

√
2, i) ⊆ F , and

F = Q( 4
√
2, i).

Then, Q( 4
√
2, i) = Q( 4

√
2)(i), and since the minimal polynomial of 4

√
2 is x4−2 and the minimal polynomial

of i over Q( 4
√
2) is x2 + 1, we get that

[Q(
4
√
2, i) : Q] = [Q(

4
√
2, i) : Q(

4
√
2)][Q(

4
√
2) : Q]

= 2 · 4 = 8.

Example 10.3. What is the degree of x4 − 2 over Q?

The roots of x4 − 2 in C are 4
√
2, 4

√
2i,− 4

√
2,− 4

√
2i.

Thus, the splitting field is Q( 4
√
2, 4

√
2i) = Q( 4

√
2, i) ⊆ C, so the degree is 8, as we just showed.

So the splitting field of x4 + 2 is the splitting field of x4 − 2.

But we can see that the splitting field of x4 +1 is Q(ω), while the splitting field of x4 − 1 is Q(i), so this
isn’t a general pattern.
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Lecture 11: The Algebraic Closure

The splitting field of x4 + 2 over Q is the degree-8 extension Q( 4
√
2, i).

The splitting field of x4 + 1 over Q is the degree-4 extension Q(
√
2, i).

All of these are subfields of Q ⊆ C, where, as we defined before Q is the set of all α ∈ C such that α is
algebraic over Q.

Can we similarly construct K for any field K?

Is K uniquely determined by K?

Is there an algebraic extension of K that splits all polynomials in K[x]?

Proposition 11.1. For fields K ⊆ E ⊆ F , F/Kis algebraic if and only if F/E and E/K is algebraic.

Proof. One direction is clear, because if every element of F is algebraic over K, then every element of F is
algebraic over E ⊇ K, and every element of E ⊆ F is algebraic over K.

For the other direction, suppose F/E and E/K are algebraic. Then, for any α ∈ F , there exists some
minimal polynomial

f(x) = xd + ed−1x
d−1 + · · ·+ e0 ∈ E[x].

Then, we can see that
K ⊆ K(e0, . . . , ed−1) ⊆ K(e0, . . . , ed−1, α).

The first extension is finite because it is finitely generated and algebraic (since each ei ∈ E), and the second
extension is finite because its degree is d. Thus, K(α)/K is also finite, so α is algebraic.

Definition 11.2. Let F be a field. F is algebraically closed if every irreducible polynomial in F [x]
has degree 1, or, equivalently, that every non-constant polynomial f(x) ∈ F [x] has a root in F .

Example 11.3. C is algebraically closed.

Is Q algebraically closed?

Take any polynomial f(x) which is irreducible in Q[x]. It has a zero α ∈ C. But then Q(α) is an algebraic
extension of Q, which is an algebraic extension of Q, so Q(α)/Q is algebraic, and α ∈ Q by definition. So,
Q is algebraically closed.

Generalizing this idea gives us the following proposition:

Proposition 11.4. Let L be an algebraically closed field, and let K be a subfield of L. Then

K = {α ∈ L | α is algebraic over K}

is an algebraically closed field that is algebraic over K.

35



Math 121 Aditi Talati Summer 2022

Definition 11.5. Let K be a field. Then, the algebraic closure of K is an algebraic extension F/K,
where F is algebraically closed.

Next lecture, we will show that for any field K, an algebraic closure of K exists and is unique up to
isomorphism over K. For the rest of this lecture, we will look at more properties of algebraically closed
fields, which will help us prove this theorem next lecture.

Lemma 11.6. A field F is algebraically closed if and only if F has no nontrivial algebraic extensions.

Proof. Assume F is algebraically closed. Then, let L be an algebraic extension of F . For any α ∈ L, we
know that the minimal polynomial of α over F must be irreducible, so since F is algebraically closed, it must
have degree 1. Thus α ∈ F , and L = F .

Assume every algebraic extension of F is trivial. Then, for any irreducible polynomial f(x) ∈ F [x], we know
that the extension F (α)/F , where f(α) = 0, is trivial. But the degree of this extension must equal the
degree of f(x), so f(x) must have degree 1, and F is algebraically closed.

We will now show that any algebraically closed extension of K contains every algebraic extension of K.

Proposition 11.7. Let L be an algebraically closed field, and K be a subfield of L. Then, if F/K is an
algebraic field extension, there is homomorphism F → L over K.

Note that algebraic closure is an absolute property, it isn’t relative to anything else.

The idea behind this proof is: If F = K(α), with minimal polynomial f(x) over K, then since f(x) ∈ L[x]
and L is algebraically closed, L must contain a root of f(x), so K(α) ⊆ L. Then, if F = K(α, β) we know
that K(α) is a subfield of L, and then there is some minimal polynomial for β over K(α), which must have
a root in L, so we can assign that root to β...
How do we know when to terminate? Using Zorn’s Lemma.

Proof. Consider the collection of homomorphisms

P = {iE : E → L over K,K ⊂ E ⊂ F} .

Then, P is a partially ordered set, under the ordering

iE1
≤ iE2

when E1 ⊆ E2 and iE2
|E1

= iE1
.

Then, for every chain C of P, we can construct the upper bound of C as follows: first, define

EC =
⋃
iE∈C

E.

This is a field since it is the union of the chain E1 ⊆ E2 ⊆ · · · . Then, the upper bound of the chain is the
homomorphism

iEC (x) = iE(x) for any iE ∈ C such that x ∈ E.

This is well-defined, because if there is E1, E2 in the chain such that x ∈ E1 ∩ E2, we know by definition
that iE1

(x) = iE2
(x).

Then, Zorn’s Lemma tells us there is a maximal element in P. Let us call this element iG : G→ L over K.

We claim G = F . To see this, assume there is some α ∈ F \ G. Then, since F/K is algebraic, G(α) is
algebraic over G. Then, let f(x) ∈ G[x] be the minimal polynomial of α over G, and let H be the image of
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G in L. Then, iG(f(x)) ∈ H[x] has some root in L, which we can call β. We get the induced isomorphism:

L

G(α) H(β)

G H

∼

iG

and we can see that iG(α) > iG, which contradicts the fact that iG is the maximal element.

Thus, G = F , and we have found a homomorphism F → L over K.

Moreover, we can show that if an algebraic closure of K exists, it is unique up to isomorphism.

Theorem 11.8. If F1, F2 are algebraic closures of K, then there is an isomorphism F1 → F2 over K.

Proof. By the above proposition, we know that there exists a homomorphism φ : F1 → F2 over K. Then,
F2/φ(F1) is an algebraic field extension. But φ(F1) ≃ F1, so φ(F1) is algebraically closed. This means the
only algebraic extensions of φ(F1) are trivial, so F2 = φ(F1) ∼= F1.
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Lecture 12: Constructing the Algebraic Closure

We begin with a review of the different type of field extensions we have seen so far, and their universal
properties. Assume K is a field.

Let F be the field generated by a root of an irreducible f(x) ∈ K[x].
=⇒ F/K contains a root of f(x) and for any L/K containing a root of f(x) there is a homomorphism
F → L over K.

F L

K

φ

Let F be the splitting field of a polynomial f(x) ∈ K[x].
=⇒ the polynomial f(x) splits completely in F [x] and for any L/K such that f(x) splits completely in L[x],
there is a homomorphism F → L over K.

F L

K

φ

Let F be the algebraic closure of K.
=⇒ F/K is algebraic and for any algebraic extension L/K there is a homomorphism L→ F over K.

F L

K

φ

Theorem 12.1. For any field K, there is an algebraic extension F/K such that F is algebraically closed.

(We already showed that such an F is unique up to isomorphism.)

Proof. It is enough to show that there is an algebraically closed field L containing K. We showed last lecture
that if we have such a field L ⊇ K, then the set of all elements in L that are algebraic over K forms a subfield
of L that is algebraically closed and an algebraic extension of K.

Let F be the set of all monic polynomials in K[x] with positive degree. Then, for each polynomial f(x) ∈ F ,
define the variable yf . Then, we will consider the ring

S = K[yf ]f∈F .

This is similar to the polynomial ring K[x], except we adjoin a new variable for each polynomial f(x) ∈ F .

Then, let I ⊆ S be the ideal (f(yf ))f∈F . This is the ideal containing f(yf ) for each polynomial f ∈ F . We
want this to be a proper ideal of S. To show this, assume it was not a proper ideal, so I contains 1. This
means there is some linear combination of finitely many of the f(yf )’s that equals 1:

g1f1(yf1) + · · ·+ gnfn(yfn) = 1,

where g1, . . . , gn ∈ S, so they are polynomials over finitely many of the other yf ’s. But then, let K ′ be
an algebraic extension of K containing roots α1, . . . , αn of f1, . . . , fn, respectively. We can evaluate this
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polynomial over K ′, setting yfi = αi for each i (and setting all of the other inputs for gi arbritarily), and we
get that

g1f1(α1) + · · ·+ gnfn(αn) = 1

0 + · · ·+ 0 = 1 ∈ K ′,

which is clearly a contradiction. Thus, I is a proper ideal of S.

Then, applying Zorn’s lemma, there is a maximal ideal ofM of S containing I. Then, we can takeK1 = S/M ,
since the quotient of a ring and a maximal ideal is a field.

Then, we can see that every non-constant f(x) ∈ K[x] has a root in K1, because [yf ] ∈ K1 and f([yf ]) =
[f(yf )] = 0 ∈ K1 since f(yf ) ∈ I by definition.

But in order for our field to be algebraically closed, we also need all polynomials in K1[x] to have a root in
the field. So we repeat the above process with K1 as our base field, and continue indefinitely to get the chain

K = K0 ⊆ K1 ⊆ K2 ⊆ · · · .

Then, we can take

L =

∞⋃
i=0

Ki,

and we can see that for any f(x) ∈ L(x), since f(x) has finitely many coefficients, there must be some Ki

such that all coefficients of f(x) are in Ki. But this means that Ki+1 ⊆ L has a root of f , so L is algebraically
closed.

Then, let F be the collection of elements of L which are algebraic over K. We showed last lecture that this
is a field, and it is clear F/K is algebraic. Then, every polynomial f(x) ∈ K[x] splits completely into linear
factors (x− α) in L[x]. But each such α, by definition, is the root of a polynomial in K[x], which means it
is an element of F , so f(x) also splits completely in F [x], and we have found an algebraic extension of K
which is also algebraically closed.

We know that typically K/K is infinite. But how large is Aut(K/K)?

Example 12.2. There are no non-identity automorphisms of R over Q, so Aut(R/Q) = 1. But [R : Q]
is infinite because

√
2,
√
3,
√
5, . . . are all linearly independent over Q.

Proposition 12.3. Let F/K be the splitting field of f(x) in K[x]. Then, there is a surjective group
homomorphism

Aut(K/K) → Aut(F/K),

which implies that
∣∣∣Aut(K/K)

∣∣∣ ≥ ∣∣Aut(F/K)
∣∣.

Proof. Let Z(f) =
{
α ∈ K

∣∣∣ f(α) = 0
}
. We can see that Z(f) ⊆ K generates the splitting field F (techni-

cally, it generates an isomorphic copy of F , as a subfield of K).

We claim that for any automorphism φ ∈ Aut(K/K), φ(F ) ⊆ F . This is because φ(Z(f)) ⊆ Z(f), since for
φ to be an isomorphism, it must map all roots of f to other roots of f . Moreover, since φ is an injective map,
and it maps a finite-dimensional vector space F/K to itself, it must also be surjective over F , so φ(F ) = F .

Thus, φ|F is an automorphism over F , so we get the group homomorphism Aut(K/K) → Aut(F/K) by
sending φ 7→ φ |F .
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This is a surjective group homomorphism, since if ψ ∈ Aut(F/K), then we know that there is a ϕ ∈
Aut(K/K) extending ψ. This is because F = K, and applying the universal property of algebraic closure
to the (top-left triangle of the) following commutative diagram

K K

F F
ψ

ii◦ψi

ϕ

tells us that ϕ must exist.
Thus, we have found a surjective group homomorphism Aut(K/K) → Aut(F/K).

The following is still an open problem

Conjecture 12.4 (Inverse Galois Problem). Given any finite group G, there is f(x) ∈ Q[x] whose
splitting field F satisfies

Aut(F/Q) ∼= G.

The proposition we just proved tells us that this would imply:

Given any finite group G, there is a surjective group homomorphism

Aut(Q/Q) → G.

Later, we will describe the group Aut(Fp/Fp).
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Lecture 13: Conjugate Elements and Normal Extensions

What is algebraic closure of K?

It is a homomorphism from K to an algebraically closed field that is algebraic over K.

We proved that for any field K, there is an algebraic closure K of K, and it is unique up to isomorphism
over K.

We also proved that for any splitting field F/K, there is a surjective group homomorphism Aut(K/K) →
Aut(F/K). (Remember that K ⊆ F ⊆ K in this case.)

Specifically, this homomorphism was the just restriction of isomorphisms of K/K to F/K. The main idea
was that if F is the splitting field of f(x) ∈ K[x], which has n distinct roots in K, then any automorphism
φ ∈ Aut(K/K) must permute these n roots (it cannot map a root of f(x) to something that is not a root of
f(x), and it is injective and therefore surjective over these roots). We can view φ as a permutation of these
n roots, and doing so gives us a homomorphism Aut(K/K) → Sn, mapping each φ to its corresponding
permutation. Then, the image of this homomorphism is isomorphic to Aut(F/K), since by Theorem 6.2,
every automorphism of F over K is defined by the permutation of these roots.

Definition 13.1. When K = Fp or K = Q, Aut(K/K) is called the absolute Galois group of K.

Remember fromMath 120 that in general, ifG is a group acting on a setX, X is the disjoint union ofG-orbits.

The group Aut(K/K) acts on the set K.

What is the corresponding orbit decomposition of K?

Definition 13.2. Two elements α1, α2 of K are conjugate if the minimal polynomial of α1 over K is
the minimal polynomial of α2 over K.

Proposition 13.3. For any α ∈ K, the orbit of α under Aut(K/K) is the set of conjugates of α over
K.

Proof. We will first prove that if two elements in K are in the same orbit under Aut(K/K), they are con-
jugate.

For any α ∈ K and φ ∈ Aut(K/K), we want to show that α and φ(α) are conjugate. But by the universal
property of field extension, we have

K(α) K(φ(α))

K[x]

x7→φ(α)x 7→α

φ

But this means that the kernels of the left and right maps must be the same. We can see that the kernel of the
K[x] → K(α) map is the ideal (fα(x)), where fα(x) is the minimal polynomial of α over K, and the kernel of
the K[x] → K(φ(α)) map is the ideal (fφ(α)(x)) where fφ(α) is the minimal polynomial of φ(α) over K. But
for these two kernels to be the same, the minimal polynomials must be the same, so α and φ(α) are conjugate.
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Next, we will prove that if two elements ofK are conjugate, they must be in the same orbit under Aut(K/K).
Take any α1, α2 in K that are conjugate. This means they have the same minimal polynomial, so K(α1) =
K(α2). This gives us the commutative diagram

K(α1) K(α2)

K[x]

∼

But then, by the universal property of the algebraic closure, we get the commutative diagram

K K

K(α1) K(α2)

K[x]

∼

∼

by first defining the blue arrow as the composition of the green arrows, and then applying the universal
property to the top-left triangle to get the purple arrow.

But the purple arrow in this commutative diagram, which we can call φ, is an automorphism K → K, and
φ(α1) = α2, since it is an extension of the isomorphism K(α1) → K(α2). But this means that α1 and α2

are in the same orbit under Aut(K/K), which is what we wanted to show.

Thus, the orbit of α under Aut(K/K) is exactly the set of conjugates of α, for any α ∈ K.

Informally, we can think of this as saying that the set K modulo the action of Aut(K/K) is the set of all
monic irreducibles in K[x]. This means that K is the set of all roots of all irreducibles in K[x].

Let’s shift back to talking about splitting fields.

Different polynomials can have the same splitting field; we saw this in Example 10.2.

A finite extension of Q isn’t necessarily the splitting field of any polynomial in Q[x]. We will show soon that
Q( 3

√
2) is not the splitting field of any polynomial in Q[x].

We will show later that every finite extension of Fp is the splitting field of some f(x) ∈ Fp[x].

Definition 13.4. An algebraic extension F/K is normal if for every irreducible polynomial f(x) ∈ K[x],
either f(x) splits in F [x] or f(X) has no roots in F .

A useful reformulation of this definition is that F/K is normal if for every α ∈ F , the minimal polynomial
of α over K splits completely in F [x].

Example 13.5.

(1) For any field K, K/K is a normal extension because for any α ∈ K, the minimal polynomial for α
is linear, so it splits completely in K[x].

(2) For any field K, K/K because by definition, every polynomial splits completely over K.
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(3) A quadratic extension F/K is normal since for all α ∈ F , either the minimal polynomial for α is
linear, or it is quadratic and can be split into (x− α) and some other linear factor.

(4) For any field K and f(x) ∈ K[x], the splitting field extension F/K is normal.

To show this, we know that K ⊆ F ⊆ K. Then, for any α ∈ F , we want to show that F
contains all conjugates of α in K. Proposition 13.3 tells us this is equivalent to showing that for
all φ ∈ Aut(K/K), φ(α) ∈ F . But we already showed that for a splitting field F , φ(F ) ⊆ F , so
we are done.

Example 13.6.

(1) The extension Q( 3
√
2)/Q is not normal because 3

√
2 ∈ Q( 3

√
2), but its minimal polynomial x3 − 2

does not split completely in Q( 3
√
2). Since we just showed that all splitting fields are normal, Q( 3

√
2)

cannot be the splitting field for any polynomial in Q[x].

(2) Similarly, Q( 4
√
2)/Q is not normal since the minimal polynomial of 4

√
2 is x4 − 2, and this does not

split completely in Q( 4
√
2). Thus, it is also not the splitting field of any polynomial in Q[x]

Theorem 13.7. The following are equivalent for any finite extension F/K:

(1) F/K is the splitting field of a polynomial over K

(2) For any homomorphisms ψ1 : F → K, ψ2 : F → K over K, ψ1(F ) = ψ2(F )

(3) F/K is normal

We just showed that (1) =⇒ (3) in the previous examples. For intuition about (2), we can see that (2)
does not hold for Q( 3

√
2)/Q. Consider the homomorphism ψ1 : Q( 3

√
2) → Q which is the inclusion map, and

ψ2 : Q( 3
√
2) → Q defined by 3

√
2 7→ ω 3

√
2, where ω = e2iπ/3. Then, we can see that imψ1 ⊆ R, while imψ2

contains ω 3
√
2, which is not an element of R, so the two cannot be equal.

Proof. We first show that (1) =⇒ (2):

Suppose F/K is the splitting field of some polynomial f(x) ∈ K[x]. Then, let α1, . . . , αn be the roots of
f(x) in K. We know that by definition of the splitting field, F must also have n distinct roots of f(x). We
can see that for any ψ : F → K, since ψ is a homomorphism over K, each of the the roots of f(x) in F must
map to some αi. Moreover, since field homomorphisms are injective, and there are n distinct roots in F ,
all of α1, . . . , αn must be in the image of ψ, and we get that ψ(F ) is exactlyK(α1, . . . , αn) ⊆ K, for all such ψ.

Then, we will show that (2) =⇒ (3):

Suppose F/K has a well-defined image F ′ in K. Then, for any φ ∈ Aut(K/K), we see that φ(F ′) must
equal F ′ (otherwise φ ◦ ψ would give us a distinct image of F , contradicting (2)). Then, we know from
Proposition 13.3 that for any α ∈ F ′, F ′ must contain all conjugates of α, so F ′/K ∼= F/K is normal.

Finally, we will show that (3) =⇒ (1):

Since F/K is finite, it has some basis α1, . . . , αn over K. For each 1 ≤ i ≤ n, let fi(x) be the minimal
polynomial for αi over K. Then,

f(x) =

n∏
i=1

fi(x)
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splits completely in F [x], and since F = K(α1, . . . , αn), F is the splitting field for f(x).

Thus, the three properties are equivalent, for finite field extensions.

Remark 13.8. Recall that if K ⊆ E ⊆ F is a chain of field extensions, then [F : K] is finite if and and
only if [E : K] and [F : E] are finite.

Similarly, if K ⊆ E ⊆ F is a chain of field extensions, then F/K is algebraic if and only if F/E and
E/K are algebraic.

But neither direction of this is true for normal extensions. We have the following counterexamples:

Q Q(
√
2) Q( 4

√
2)normal normal

not normal

Q Q( 3
√
2) Q( 3

√
2, ω)not normal normal

normal

However, we do have the following weaker proposition:

Proposition 13.9. If K ⊆ E ⊆ F is a chain of field extensions, and F/K is normal, then F/E is normal.

Proof. For α ∈ F , define fK(x) to be the minimal polynomial of α over K and fE(x) to be the minimal
polynomial of α over E. But this means there is some g(x) ∈ E[x] such that

fK(x) = fE(x)g(x) ∈ E[x].

So if fK(x) splits completely in F [x], fE(x) must also split completely in F [x], so since F is normal over K,
it must also be normal over E.

If we have a chain of field extensions K ⊆ E ⊆ F , where F/K and E/K are both normal, what can we say
about their automorphism groups?

We know there is a group automorphism Aut(F/K) → Aut(E/K) defined by the restriction map φ 7→ φ|E .
Moreover, since we have the following commutative diagram,

Aut(F/K) Aut(E/K)

Aut(K/K)

and the arrows in green are surjective by Proposition 12.3, our map Aut(F/K) → Aut(E/K) must also be
surjective. But we need φ(E/K) to be normal for this map to exist, since we are relying on the fact that,
for any automorphism φ : F/K → F/K, φ(E) = E.

This is a preview of some of the Galois theory we will be doing towards the end of this course.
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Lecture 14: Separable Polynomials

Last time, we discussed properties of finite normal extensions. But there are also infinite normal extensions.

Example 14.1. The extensions C/R, Q(i)/Q, and F4/F2 are all normal because they are quadratic.

Remember from last time that for a chain of field extensions K ⊆ E ⊆ F , it is possible for F/K to be normal
but E/K to not be normal. For example:

Q Q( 3
√
2) Q( 3

√
2, ω)not normal normal

normal

Let us say we have some α ∈ K whose minimal polynomial over K is f(x). Then, the roots of f(x) are the
conjugates of α over K, by definition.

Does this mean that, if α = α1, . . . , αn are the conjugates of α, f(x) is exactly

n∏
i=1

(x− αi) ∈ K[x],

or can some of the roots appear with multiplicity?

In general, there can be multiplicity, but when K = Q or R or Fp for prime p, there is no multiplicity. We
will learn later that this is because Q and R and Fp are examples of perfect fields.

Definition 14.2. The polynomial f(x) ∈ K[x] is separable if all its roots over its splitting field are
distinct; it has no factors that appear multiple times.

The amazing fact is that we can easily decide if f(x) is separable or not, by differentiating f(x) over K.

Definition 14.3. We define the derivative over K to be the K-linear map d
dx

: K[x] → K[x], defined
by

d

dx
(xn) = nxn−1 and

d

dx
(1) = 0.

Here, the exponent n is an integer, so in the term nxn−1, we take n to mean 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

.

Then, we need to know that the derivative of a product is what we would expect.

Theorem 14.4. d
dx (fg) = f d

dx (g) + g d
dx (f).

Proof. Since the derivative is a K-linear map, we just need to show that this holds for basis elements, so
when f = xm and g = xn for some positive integers m and n. We can see that

d

dx
(xm+n) = (m+ n)xm+n−1

= nxn−1xm +mxm−1xn

= xm
d

dx
(xn) + xn

d

dx
(xm).

Thus, the derivative of our product is what we wanted.

Using this, we have a condition for when f(x) ∈ K[x] is separable.
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Theorem 14.5. A polynomial f(x) ∈ K[x] is separable if and only if f(x) and d
dx (f(x)) are relatively

prime in K[x].

Proof. Let F be the splitting field of f(x).

First, if f(x) has a multiple root α ∈ F , so that

f(x) = (x− α)mg(x) ∈ F [x],

where m ≥ 2, the derivative is

d

dx
(f(x)) = m(x− α)m−1g(x) + (x− α)m

d

dx
g(x).

But then, clearly (x−α) is a factor of both f(x) and d
dx (f(x)) in F [x], which means the minimal polynomial

for α must be a factor of both f(x) and d
dx (f(x)) in K[x], and the two cannot be relatively prime.

Then, if f(x) and d
dx (f(x)) are not relatively prime in K[x], they have some common factor d(x) in K[x].

But then d(x) splits in F [x], so there exists some α ∈ F that is a root of both f(x) and d
dx (f(x)). So, we

can write
f(x) = (x− α)h(x) ∈ F [x],

and taking the derivative gives us

d

dx
(f(x)) = h(x) + (x− α)

d

dx
h(x).

So for d
dx (f)(α) to be 0, we need h(α) = 0. But that means that (x−α)2 is a factor of f(x), and f(x) is not

separable.

Corollary 14.6. If ch(K) = 0 then every irreducible polynomial in K[x] is separable.

Proof. If f(x) ∈ K[x] is an irreducible polynomial of degree d, then d
dxf(x) is a nonzero polynomial of degree

d− 1, which clearly must be relatively prime to an irreducible. So f(x) is separable.

The above proof doesn’t work for a field with characteristic p, because in that case it is possible that
d
dxf(x) = 0 even when f(x) is non-constant, and then f(x) and its derivative are not relatively prime.

Example 14.7. For an example of an irreducible polynomial that is not separable, consider the field
K = Fp(t).

Then, take
f(x) = xp − t ∈ K[x].

This is irreducible by Eisenstein’s criterion applied to the prime ideal (t). But it is not separable, since
d
dx (x

p − 1) = 0, and f(x) and 0 are not relatively prime.

Specifically, we can see that α = t1/p is a root of this polynomial. If we consider the field F = K(α), we
can see that

(x− α)p = xp − αp = xp − t ∈ F [x],

so α is the only root of f(x) in K, and it appears with multiplicity p.
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Lecture 15: Perfect Fields

Last lecture, we defined a separable polynomial as one whose roots are all distinct. Moreover, we showed
that a polynomial f(x) ∈ K[x] is separable if and only if f(x) and f ′(x) are relatively prime in K[x], which
implies that when ch(K) = 0, every irreducible polynomial is separable.

Let us now consider case where f(x) ∈ K[x] is an irreducible but not separable polynomial. This occurs
only in the case where ch(K) is some prime p > 0. Moreover, d

dx (f(x)) must be the constant polynomial 0,

because otherwise f(x) and d
dx (f(x)) are still relatively prime.

Then, if we write
f(x) = a0 + a1x+ · · ·+ adx

d,

we get that
d

dx
(f(x)) = a1 + · · ·+ dadx

d−1.

For this derivative to equal 0, we must have ai = 0 for all i not divisible by p. So f(x) must be of the form

f(x) = a0 + apx
p + · · ·+ adpx

dp.

Definition 15.1. Suppose ch(K) = p. Then, the Frobenius map of K is the map φ : K → K defined
by φ(a) = ap.

An amazing fact is that φ is a field homomorphism, since ap + bp = (a+ b)p and apbp = (ab)p in K.

Remark 15.2. The only homomorphism from Fp to Fp is the identity map, since we must map 1 to 1,
and 1 generates all of Fp. This implies that ap ≡ a mod p for any a ∈ Z.

But for any finite field K of cardinality pe, where e > 1, the Frobenius map is not the identity map.
This is because xp − x cannot have more than p roots in K, but K has more than p elements, so there
must be elements a ∈ K such that ap ̸= a.

The Frobenius map is thus a nontrivial automorphism of a finite field - we know it is an isomorphism
because all field homomorphisms are injective, and since the domain and the range are both K, which
is finite, it must also be surjective.

Definition 15.3. A field K is perfect if ch(K) = 0 or ch(K) = p and the Frobenius map of K is
surjective.

We like perfect fields, because they have lots of nice properties that make doing Galois theory with them
very clean and applicable

Example 15.4.

(1) Every finite field is perfect, as we showed above.

(2) Every algebraic extension of a finite field is perfect, but there aren’t many examples of infinite
algebraic extensions. This is because (as we showed on homework 3) all homomorphisms over the
base field extend to isomorphisms over an algebraic extension.

(3) All fields of characteristic 0 are perfect.
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Theorem 15.5. In a perfect field, all irreducible polynomials in K[x] are separable.

Proof. We already showed that this is true when ch(K) = 0, so we just need to prove the case where
ch(K) = p > 0.
In this case, assume we can find some f(x) ∈ K[x] that is irreducible and inseparable. We showed at the
beginning of this lecture that this means

f(x) = a0 + apx
p + a2px

2p + · · ·+ anpx
np,

for some n. Since K is prefect, we know that each aip can be expressed as bpi for some bi ∈ K. Then,

f(x) = bp0 + bp1x
p + · · ·+ bpnx

np

= (b0 + b1x+ · · ·+ bnx
n)p,

so f(x) is not irreducible, which is a contradiction.

Definition 15.6. An algebraic extension F/K is separable if for every α ∈ F , the minimal polynomial
of α over K is separable.

Remark 15.7. Note that “the minimal polynomial of α over K is separable” is a property of α and K,
not K itself. Thus, if we have a chain of field extensions K ⊆ E ⊆ F , then if F/K is separable, so is
E/K (since this is a subset of F/K) and F/E (since E = K).

Remark 15.8. If K is perfect, then every algebraic extension F/K is separable. This is because the
minimal polynomial for any α ∈ F is irreducible in K[x], so it must be separable.

Proposition 15.9. For a field K, the following are equivalent:

(1) K is perfect

(2) Every irreducible polynomial in K[x] is separable

(3) Every algebraic extension of K is separable

Proof. We already know that (1) =⇒ (2). We will show that (2) =⇒ (3) and (3) =⇒ (1), to show that
the three are equivalent.

We first show that (2) =⇒ (3). We can see that for any algebraic extension F/K, and any α ∈ F , the
minimal polynomial for α over K is irreducible in K[x]. Thus, by (2), it is separable, so our algebraic
extension is separable.

Then, we will show that (3) =⇒ (1). Assume every algebraic extension of K is separable. If ch(K) = 0
then K is perfect by definition, so assume ch(K) = p. We need to show that the Frobenius map is surjective.
That is, for every a ∈ K, we need to show that there exists b ∈ K such that bp = a. Consider the polynomial
xp − a. We know that this has some root b ∈ K; we want to show that b ∈ K. Consider the minimal
polynomial f(x) of b over K. We know that there exists some g(x) such that

(xp − a) = (x− b)p = f(x)g(x) ∈ K[x].

But this means f(x) = (x − b)k ∈ K[x], for some k ≤ p. But we know by (3) that K(b) is separable and
therefore f(x) is separable, which means k = 1, and the minimal polynomial for b over K is x− b, so b ∈ K.
Thus, the Frobenius map is surjective, and K is perfect.
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Lecture 16: Finite Fields of Prime Power Order

Let F be a finite field, and let p = ch(F ). Remember that there is a natural homomorphism f : Z → F
determined by f(1) = 1. The kernel of this map is pZ, and quotienting out this kernel gives us the injective
field homomorphism Fp → F .

Fp F

Z
π f

Theorem 16.1. Say that q = pn, where p is a prime and n ≥ 1. Then, there is a field F with |F | = q,
and it is unique up to isomorphism.

We will call this field Fq.

Proof. Let F be the splitting field of f(x) = xq − x over Fp.

Note that d
dx (f(x)) = qxq−1 − 1 = −1. So it is relatively prime to f(x), and f(x) must therefore be a

separable polynomial.

Thus, there are exactly q distinct roots of f(x) in F . We will call this set of roots R ⊆ F , and note that
|R| = q.

But R has all the properties of a field:

It is clear that O and 1 are both roots of f(x). Moreover, for any roots a, b of f(x), we know that aq = a
and bq = b. So (ab)q = aqbq = ab, so this is closed under multiplication, and

(a+ b)q =
(
(a+ b)p

)pn−1

= (ap + bp)p
n−1

= (ap
2

+ bp
2

)p
n−2

= · · · = aq + bq = a+ b,

so this is closed under addition. Finally, if aq = a and a ̸= 0, we can see that

(a−1)q = a−q = (aq)−1 = a−1,

so this is closed under inverses. Thus, R is a subfield of F .

But this implies that Fp ⊆ R, since 1 ∈ R and 1 generates all of Fp. Moreover, since R contains all roots of
f(x), f(x) splits over R. Since R ⊆ F , and F is the splitting field of f(x), this means that R = F , and we
get that |F | = |R| = q, as we desired.

To show uniqueness, suppose F is a field |F | = q. Then, we can see that F× is an abelian group, with∣∣F×
∣∣ = q − 1.

This means that for any α ∈ F×, αq−1 = 1, so for any α ∈ F , αq = α. Thus, F contains q distinct roots of
the polynomial xq − x, so it is the splitting field of xq − x, which we know is unique up to isomorphism.

Corollary 16.2. The field extension Fq/Fp is normal and separable.

Proof. It is normal because we know all splitting field extensions are normal, and it is separable because Fp
is a perfect field, so every algebraic extension is separable.
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Proposition 16.3. We can see that the algebraic closure is

Fp =
∞⋃
n=1

Fpn .

Proof. It is sufficient to show that for any irreducible g(x) ∈ Fp[x], g splits completely in some Fpn . Let
F be the splitting field of g(x) over Fp, and say [F : Fp] = n. But then, we know that |F | = pn, so F is
isomorphic to Fpn , and g(x) splits completely over Fpn .
Thus, for any α that is algebraic over Fp, its minimal polynomial splits completely in some Fpn , so

Fp =
∞⋃
n=1

Fpn .

Moreover, since Fq/Fp is normal for every q, we see that for every q, there is a unique image of Fq in Fp.

The field Fq that we just constructed has the property that F×
q is cyclic. To show this, we will prove a more

general theorem.

Theorem 16.4. Let F be any field. Then, if G ⊆ F× is a finite subgroup of the multiplicative group,
it is cyclic.

Proof. By the fundamental theorem of finite abelian groups, we know we can express G as

G ∼= Z/d1Z× · · · × Z/dkZ,

where each di is greater than 1, and
d1 | d2 | · · · | dk,

so each di is a multiple of the previous ones.

Then, this implies that for any α ∈ G,
αdk = 1,

so G is a subset of the roots of f(x) = xdk − 1 in F . There are at most dk such roots in F , so |G| ≤ dk.

But we know that |G| = d1d2 · · · dk. So this implies that actually k = 1 and G ∼= Z/d1Z, so G is cyclic.

Corollary 16.5. For all prime powers q, Fq is cyclic.

Proof. This follows directly from the above theorem, by taking F = Fq and G = F×
q .

As a reminder, a simple extension F/K is one in which F = K(α) for some α ∈ F .

Corollary 16.6. Fq/Fp is a simple extension.

Proof. We can see that since F×
q is cyclic, we can take α to be a generator of F×

q , and then clearly Fq =
Fp(α).

Corollary 16.7. For any n ≥ 1, there is an irreducible polynomial of degree n in Fp[x].

This follows from the fact that Fp/Fp is not a finite extension; in contrast, all irreducible polynomials over
R have degree at most 2.

Proof. Take q = pn, and consider the field extension Fq/Fp. By Corollary 16.6 we know this is a simple
extension, so there exists some α so that Fq = Fp(α). But then the minimal polynomial for α over Fp is an
irreducible, and it has degree [Fq : Fp] = n.
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Lecture 17: The Automorphism Group of Fq/Fp

We are working with q = pn, where p is prime. We showed last time that Fq/Fp is a simple, normal, and
separable extension.

What is the automorphism group Aut(Fq/Fp)?

We know that it is not just {1}, because the Frobenius map

φF : Fq → Fq
α 7→ αp

is a non-trivial element of the automorphism group.

Theorem 17.1. There is an isomorphism of groups Aut(Fq/Fp) → Z/nZ, φF 7→ 1. So Aut(Fq/Fp) is
cyclic.

To prove this, we use the following lemma:

Lemma 17.2. If F = K(α), where α is algebraic over K, and F/K is normal and separable, then∣∣Aut(F/K)
∣∣ = [F : K].

Proof. Let f(x) be the minimal polynomial of α over K. Then, we know there is a set bijection between
Aut(F/K) and the roots of f(x) in F . But since F/K is normal, F must contain all the roots of f(x), and
since F/K is separable, there are exactly deg f(x) = [F : K] distinct roots of f(x).

Thus,
∣∣Aut(F/K)

∣∣ = [F : K].

Now that we have this lemma, we can go back to proving the main theorem.

Proof of theorem. Recall that if we take α to be a generator of F×
q (which we proved was cyclic), then

Fq = Fp(α).

Moreover, we showed that since Fq/Fp is the splitting field of xq − x, it is normal, and since Fp is perfect,
Fq is separable.

So we can apply the lemma to get that
∣∣Aut(Fq/Fp)

∣∣ = [Fq : Fp] = n.

Then, let d be the order of φF , as an element of this automorphism group. This means that φdF is the
identity, so for all β ∈ Fq,

β = φdF (β) = βp
d

.

So every element of Fq must be a root of f(x) = xp
d − x, which means q ≤ pd, or n ≤ d. But since d is the

order of an element in the automorphism group, d must be at most n, so we get that n = d.

Thus, this is a cyclic group of order n that is generated by φF , so it is isomorphic to Z/nZ under the
isomorphism specified.

51



Math 121 Aditi Talati Summer 2022

Now, we will look at the group symmetries of a polynomial.

Remember that if we have a polynomial f(x) ∈ K[x], and F is the splitting field of f(x), then elements of
Aut(F/K) are permutations of the roots of f(x) in F . These possible permutations are what we mean by
the symmetries of a polynomial.

From what we have shown earlier, if K = C, then this group is always just {1}. If K = R, the group is
Z/nZ, where n = [F : K], which is either 1 or 2, depending on whether the polynomial has imaginary roots.
If K = Fp, the group is Z/nZ, where n = [F : K]. In this case, n can be arbitrarily large.

Example 17.3. We know that C is the splitting field of x4 − 1 over R, and we can consider Fq to be
the splitting field of xq−1 − 1 over Fp.

Definition 17.4. The mth cyclotomic extension of an arbitrary field K is the splitting field of xm−1
over K.

We will assume that m is not divisible by ch(K), since otherwise, if ch(K) = p,

xm − 1 = (xm/p − 1)p,

so this is just the splitting field of xm/p − 1 (and we can repeat this process if m/p is still divisible by p).

Under this assumption, xm − 1 is separable over K, since mxm−1 is not the zero polynomial, and the only
root of mxm−1 is 0, so it has no roots in common with xm − 1.

An easy observation is that the group of roots of xm−1 inK is a subgroup of (K)×. We will call this subgroup
µ[m], since it has m elements. Moreover, by Theorem 16.4, we know that µ[m] is cyclic, so µ[m] ∼= Z/mZ.

Definition 17.5. A primitive mth root of unity in K is a generator of µ[m].

For primitive roots of unity α ∈ µ[m], we have the isomorphism µ[m] → Z/mZ defined by αi 7→ i.

Corollary 17.6. The splitting field of xm − 1 over K is K(α), where α is any primitive mth root of
unity.

How many primitive mth roots of unity are there in K?

We know that µ[m] ∼= Z/mZ, so the question becomes: how many generators are there in Z/mZ?

An element x ∈ Z/mZ is a generator if and only if x is relatively prime to m. Thus, the number of primitive
mth roots of unity is

∣∣(Z/mZ)×
∣∣ = φ(m).

Theorem 17.7. Let K be any field, and let F = K(α), where α is a primitive mth root of unity.
Then, there is an injective group homomorphism Aut(F/K) → (Z/mZ)×, where if φ(α) = αℓ, then the
homomorphism is φ 7→ ℓ.

Proof. For an automorphism φ ∈ Aut(F/K), what elements can φ(α) be?

We know that φ must map α to a different primitive root of unity, so if φ(α) = αℓ, then ℓ ∈ (Z/mZ)×, as
we wanted.
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Since our automorphisms are determined by where they map α, this is an injective map. Moreover, we can
see that if φ1(α) = αℓ1 and φ2(α) = αℓ2 , then

φ1φ2(α) = αℓ1ℓ2 ,

so this is a group homomorphism.

Thus, Aut(F/K) is isomorphic to a subgroup of (Z/mZ)×, which means it is abelian.

The main question is: when is the map defined in the theorem an isomorphism?
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Lecture 18: Cyclotomic Extensions

Let K be a field. Remember that we are looking at cyclotomic extensions of K; that is, we are looking at
K adjoined with the mth roots of unity.

As before, let µ[m] be the group of mth roots of unity; this is a subgroup of (K)×. Let α be a primitive root
of unity, so that K(µ[m]) = K(α).

We left off last lecture by showing that there is an injective group homomorphism

Aut(K(α)/K) → (Z/mZ)×.

When is this an isomorphism?

This happens if and only if [K(α) : K] = φ(m).

Example 18.1. Consider C = R(µ[m]) for any m ≥ 3. We know that the automorphism group
Aut(C/R) has two elements; the identity, and complex conjugation. Then, we have that the image
of our identity under our map Aut(C/R) → (Z/mZ)× that we defined earlier is 1, and the image of
complex conjugation is -1 (since for a root of unity, its inverse is its complex conjugate).

This is not an isomorphism for m > 3.

Example 18.2. Consider F8 = F2(µ[7]).

In this case, our injective group homomorphism Aut(F8/F2) → (Z/7Z)× is not an isomorphism. We can
see that φF : x 7→ x2 has order 3; if α is a primitive root of x7 − 1 then

φ1
F (α) = α2, φ1

F 7→ 2

φ2
F (α) = α4, φ2

F 7→ 4

φ3
F (α) = α8 = α, φ3

F 7→ 1,

and these are the three elements of Aut(F8/F2).

In general, since Fpn = Fp[x]/(xp
n−1−1), we get that our injective group homomorphism Aut(Fpn/Fp) →

(Z/(pn − 1)Z)× is defined by φF 7→ p, and therefore this is not an isomorphism.

We will now look at one example where this is an isomorphism:

Example 18.3. Remember that the splitting field of x4 + 1 over Q is Q(α) where α = eiπ/4. This
implies that α is a primitive 8th root of unity, and we can see that the automorphisms of Q(α)/Q are:

1 : α 7→ α

φ3 : α 7→ α3

φ5 : α 7→ α5

φ7 : α 7→ α7,

since they must all be permutations of the roots of x4 +1. Moreover, we can see that each map squared
is the identity, so

Aut(Q(µ[8])/Q) ∼= (Z/2Z)× (Z/2Z).
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But
∣∣(Z/8Z)×∣∣ = 4 as well, so in this case,

Aut(Q(µ[8])/Q) ∼= (Z/8Z)×

and the injective group homomorphism is actually an isomorphism.

Theorem 18.4. For any m,
Aut(Q(µ[m])/Q) ∼= (Z/mZ)×.

In other words, the degree [Q(µ[m]) : Q] is φ(m).

Proof. Let α be a primitive mth root of unity in Q and let f(x) be the minimal polynomial of α over Q. We
know that f(x) ̸= xm − 1, since xm − 1 is not irreducible over Q. Thus,

xm − 1 = f(x)h(x) ∈ Q[x],

for some h(x). Moreover, by Gauss’s lemma, this means we can factor xm − 1 in the same way in Z[x].
Then, we need the following claim:

Claim. For any prime p not dividing m, αp is a root of f(x). In other words, α and αp are conjugates
over Q.

To prove the claim, suppose αp is not a root of f(x). Then, αp is still an mth root of unity, so it must be a
root of h(x). But this means α is a root of h(xp). But then h(xp) = f(x)g(x) ∈ Q[x], for some g(x) ∈ Q[x].
By Gauss’s Lemma, this means that h(xp) = f(x)g(x) ∈ Z[x] as well.

Then, since we are working with polynomials with integer coefficients, we can consider f̃(x), g̃(x), and h̃(x)
to be the images of f(x), g(x), and h(x), respectively, in Fp[x]. But in Fp[x],

h̃(xp) = (h̃(x))p,

so (h̃(x))p is a multiple of f̃(x), and h̃ and f̃ are not relatively prime in this field.

But
xm − 1 = f̃(x)h̃(x),

so xm−1 has a multiple root in Fp. But we know that since Fp is perfect and (m, p) = 1, xm−1 is separable
over Fp. This is a contradiction, and so αp must be a root of f(x).

Now that we have this claim, note that for any ℓ relatively prime to m, αℓ must be a root of f(x), since we
can write ℓ as the product of primes relatively prime to m, and then inductively imply the claim.

Thus, f(x) has at least φ(m) distinct roots, and then by Theorem 6.2, we get that
∣∣Aut(Q(µ[m])/Q)

∣∣ ≥ φ(m).

But since we know there is an injective group homomorphism
∣∣Aut(Q(µ[m])/Q)

∣∣ → (Z/mZ)×, the size of this
automorphism group must at most φ(m), and therefore this homomorphism is actually an isomorphism.

We can see that the above theorem actually holds for any field K that is the field of fractions for a UFD
R; we replace Z[x] with R[x] and then prove our claim in R/(p), where p is actually the image of p in the
homomorphism Z → R.
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Lecture 19: Fermat Primes and Constructibility II

We now have the tools to return to the question: which regular n-gons are constructible using a straightedge
and compass?

In an earlier lecture, we said that we can construct △, □, D, and 7.

We can also construct octagons, since we know how to bisect an angle. We cannot construct a 9-gon, since
we cannot trisect an angle, and we can also construct a 10-gon, 12-gon, 15-gon (shown by Euclid), 16-gon,
and 17-gon (shown by Gauss).

Note that if a point (x, y) is constructible, then both x and y are constructible, since we have:

where we can first find the midpoint in blue, and then use that to draw the circle in purple. From Theorem 8.3
this means that x and y are both algebraic over Q, and [Q(x, y) : Q] = 2r for some integer r ≥ 0.

Theorem 19.1. If a regular n-gon is constructible, then φ(n) is a power of 2.

We will see later using Galois theory that the converse of this also holds.

Proof. Recall that if (x, y) ∈ R2 is constructible, then [Q(x, y) : Q] = 2ℓ for some integer ℓ > 0.

Then, consider a primitive nth root of unity ζn ∈ C. We know that the image of ζn under the map C → R2,
x+ iy 7→ (x, y) is a point on our regular n-gon, so it must be constructible.

But then, if ζn = x+ iy, we get that

[Q(x, y, i) : Q] = [Q(x, y, i) : Q(x, y)][Q(x, y) : Q] = 2ℓ+1.

Since ζn ∈ Q(x, y, i), we can see that

2ℓ+1 = [Q(x, y, i) : Q] = [Q(x, y, i) : Q(ζn)][Q(ζn) : Q],

so [Q(ζn) : Q] = 2k for some k ≤ n.

Since by Theorem 18.4, [Q(ζn) : Q] = φ(n), we get that φ(n) = 2k, as we wanted.

Consider the case where we are trying to construct a p-gon, for some prime p. This theorem is saying that
if a regular p-gon is constructible, then φ(p) = p− 1 = 2k for some integer k ≥ 0.
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Definition 19.2. A Fermat prime is a prime of the form 2k + 1.

Proposition 19.3. If p is a Fermat prime, then p = 22
l

+ 1 for some integer ℓ ≥ 0.

Proof. Assume p is a Fermat prime, so it is of the form 2k+1, but k is not a power of 2. Then, we can write
k = 2ab, where a ≥ 0 and b > 1 is odd.

But then, we can see that 22
a

+ 1 is a factor of 2k + 1 (This is because x+ 1 is a factor of xb + 1 when b is

odd, and we can write 2k + 1 as
(
22

a
)b

+ 1...), which contradicts the fact that 2k + 1 is prime.

Thus, all Fermat primes are of the form 22
ℓ

+ 1.

We can consider some examples of numbers of the form 22
ℓ

+ 1:

22
0

+ 1 = 3

22
1

+ 1 = 5

22
2

+ 1 = 17

22
3

+ 1 = 257

22
4

+ 1 = 65537

22
5

+ 1 = 4294967297 = 641 ∗ 6700417,

so not all numbers of this form are prime. In fact, the first five terms listed here are the only known Fermat
primes, and we are not sure if any more Fermat primes exist.

Definition 19.4. The mth cyclotomic polynomial, denoted Φm(x), is the minimal polynomial of a
primitive mth root of unity over Q.

The degree of the mth cyclotomic polynomial is φ(m).

We can also see that for any m,

Φm(x) =
xm − 1∏
n|m
n<m

Φn(x)
,

since any y ∈ µ[m] is a primitive dth root of unity for some d | m; specifically, it is a primitive dth root of
unity, where d is the order of y in the group µ[m].

By manually computing, it has been shown that all nonzero coefficients of Φm(x) are ±1, for m < 105. But
Φ105(x) has some coefficients that are ±2, and in general we conjecture that the value of the coefficients is
bounded based on the number of distinct odd prime divisors of m.
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Lecture 20: The Separable Degree of a Field Extension

Recall that a field extension F/K is separable if every α ∈ F is separable over K (the minimal polynomial
for α over K has no multiple roots in K). We showed in Corollary 14.6 and in Theorem 15.5 that if K is
finite or ch(K) is 0, then F/K is separable.

Also, remember that a field extension F/K is normal if for every α ∈ F , the minimal polynomial for α
over K splits completely in F [x]. We showed in Theorem 13.7 some properties that are equivalent to a field
extension being normal.

We will now show some inequalities in category theory.

Theorem 20.1. For any finite extension F/K,∣∣Aut(F/K)
∣∣ ≤ ∣∣∣Hom(F/K,K/K)

∣∣∣ ,
with equality if and only if F/K is normal.

Proof. Let G be the group Aut(F/K) and let X be the set Hom(F/K,K/K). Then, there is a G-action on
X, where for all φ : F/K → F/K and ψ : F/K → K/K,

φ · ψ = ψ ◦ φ,

which is the map

F/K F/K K/K
φ ψ

This is true for all categories.

Remember that a free action is one in which g · x = x if and only if g = 1. But we can see that in this case,
since ψ ∈ X is a field homomorphism, it is injective, so for any a ∈ F

ψ(φ(a)) = ψ(a)

if and only if φ(a) = a. Thus, φ · ψ = ψ ◦ φ = ψ only when φ is the identity, and this a free action.

Then, we know that since we have a G-action on X, X must be the disjoint union of G-orbits. Then, the
orbit-stabilizer theorem tells us that the size of the orbit of x ∈ X is |G| divided by the size of the stabilizer
of x. But since this is a free group, we get that the stabilizer of x is just the identity, and therefore the size
of the orbit of x is just |G|.

Since the size of an orbit is at most |X|, we get |G| ≤|X|, or∣∣Aut(F/K)
∣∣ ≤ ∣∣∣Hom(F/K,K/K)

∣∣∣ ,
as we desired.

Then, equality holds if and only if there is exactly one orbit under this group action.

Claim. Two homomorphisms ψ1, ψ2 ∈ X are in the same G-orbit if and only if ψ1(F ) = ψ2(F ).

The only if part is clear, because for any φ ∈ G, φ is an automorphism, so φ · ψ1(F ) = ψ1(F ), and if
ψ1(F ) ̸= ψ2(F ) then clearly φ · ψ1 ̸= ψ2.

58



Math 121 Aditi Talati Summer 2022

For the other direction, suppose ψ1(F ) = ψ2(F ) = F ′ ⊆ K. By the first isomorphism theorem, ψ2 : F → F ′

is an isomorphism over K, so it has an inverse ψ−1
2 which is also an isomorphism. Similarly, ψ1 : F → F ′ is

an isomorphism, so ψ−1
2 ◦ ψ1 : F → F is an isomorphism, and the diagram

F/K F/K K/K
ψ−1

2 ◦ψ1 ψ2

ψ1

commutes. Thus, ψ−1
2 ◦ ψ1 is an element of Aut(F/K) and sends ψ2 to ψ1.

So our claim is true, and we have that∣∣Aut(F/K)
∣∣ = ∣∣∣Hom(F/K,K/K)

∣∣∣
if and only if there is some F ′ ⊆ K such that ψ(F ) = F ′ for all ψ ∈ Hom(F/K,K/K). But by Theorem 13.7,
this is true if and only if F/K is normal.

Let’s take a closer look at Hom(F/K,K/K).

Definition 20.2. The size of Hom(F/K,K/K), or
∣∣∣Hom(F/K,K/K)

∣∣∣ is called the separable degree

of F over K.

Theorem 20.3. The separable degree is multiplicative; that is, for any chain of field extensions K ⊆
E ⊆ F , ∣∣∣Hom(F/K,K/K)

∣∣∣ = ∣∣∣Hom(E/K,K/K)
∣∣∣∣∣∣Hom(F/E,E/E)

∣∣∣ .
Proof. There is a map between sets, called the restriction map

r : Hom(F/K,K/K) → Hom(E/K,K/K)

defined by (
F/K K/K

)
φ 7−→

(
E/K F/K K/K

)
φ

inclusion

Then, we can see that for any ψ : E/K → K/K, the preimage r−1(ψ) is the set of all φ : F/K → K/K that
restrict to ψ on E. But since K = E, we get that

r−1(ψ) ∼= Hom(F/E,E/E).

Thus, the size of the domain is the number of options for ψ, times the size of r−1(ψ), and therefore∣∣∣Hom(F/K,K/K)
∣∣∣ = ∣∣∣Hom(F/E,E/E)

∣∣∣∣∣∣Hom(E/K,K/K)
∣∣∣ .

Theorem 20.4. For any finite field extension F/K,∣∣∣Hom(F/K,K/K)
∣∣∣ ≤ [F : K],

with equality if and only if F/K is separable.

Proof. We will show this via induction on the degree [F : K].
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First, for the base case, if [F : K] = 1, then F = K and the only homomorphism that fixes K is the identity,

so
∣∣∣Hom(F/K,K/K)

∣∣∣ = [F : K] = 1.

For the inductive case, assume the statement is true for all extensions of degree at most k; we will prove
it for [F : K] = k + 1. Choose some field extension K ⊊ E = K(α) ⊆ F , and let f(x) be the minimal
polynomial of α over K. Remember from the previous theorem that∣∣∣Hom(F/K,K/K)

∣∣∣ = ∣∣∣Hom(F/E,E/E)
∣∣∣∣∣∣Hom(E/K,K/K)

∣∣∣ .
Then, we know that by the inductive assumption,

∣∣∣Hom(F/E,E/E)
∣∣∣ ≤ [F : E] and by Theorem 6.2,∣∣∣Hom(E/K,K/K)

∣∣∣ is the number of distinct roots of f(x) in K, so it is at most [E : K]. Thus, we get that∣∣∣Hom(F/K,K/K)
∣∣∣ ≤ [F : E][E : K] ≤ [F : K].

Specifically, we can see that if F is separable over K, then it is separable over E, and by the inductive

assumption,
∣∣∣Hom(F/E,E/E)

∣∣∣ = [F : E]. Moreover, f(x) is separable, so the number of distinct roots of

f(x) in K is exactly [E : K], and we get∣∣∣Hom(F/K,K/K)
∣∣∣ = [F : K].

If F is not separable over K, then either F is not separable over E and by the inductive assumption,∣∣∣Hom(F/E,E/E)
∣∣∣ < [F : E], or f(x) is not separable and the number of distinct roots of f(x) in K is

strictly less than [E : K] (or both). Thus, in this case,∣∣∣Hom(F/K,K/K)
∣∣∣ < [F : K].

Thus, by induction, the theorem statement holds.

Corollary 20.5. A field extension K(α)/K is separable if and only if α is separable over K. More
generally, K(α1, . . . , αn)/K is separable if and only if α1, . . . , αn are separable over K.

Proof. The “only if” direction is clear.

For the other direction, note that if α is separable then the homomorphisms in Hom(K(α)/K,K/K) are

determined by where we map α to in K, so
∣∣∣Hom(K(α)/K,K/K)

∣∣∣ is the number of distinct roots of f(x) in

K, which we know by separability is [K(α) : K]. But then,∣∣∣Hom(K(α)/K,K/K)
∣∣∣ = [K(α) : K],

so by the theorem above, K(α) is separable.

For the K(α1, . . . , αn) case, repeat the above step inductively.

Corollary 20.6. For any finite F/K, ∣∣Aut(F/K)
∣∣ ≤ [F : K],

with equality if and only F/K is normal and separable.

Proof. This follows from combining the above two theorem statements.
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The inequalities we proved above are pretty hefty. For some intuition about them, recall that in Theorem 6.2
we showed that if f(x) is the minimal polynomial for α over K,

∣∣Aut(K(α)/K)
∣∣ is the number of distinct

roots of f(x) in K(α). This gives one special case of the above corollary, because we can see that if f(x) is
separable and splits completely in K(α), then clearly∣∣Aut(K(α)/K)

∣∣ = [K(α) : K],

and otherwise there are some roots of f(x) that are either duplicates or don’t appear in K(α), so∣∣Aut(K(α)/K)
∣∣ < [K(α) : K].

Definition 20.7. A finite extension F/K is called a Galois extension if F/K is normal and separable.

Example 20.8. If K is a finite field, or if it has characteristic 0, then it is perfect. Thus, by Proposi-
tion 15.9, for any f(x) ∈ K[x], the splitting field F of f(x) is normal and separable over K, so F/K is
Galois.

Similarly, for any F/K where F is finite, then F is separable since K must be finite and therefore perfect,
and it is normal because it is the splitting field of x|F | − x over Fp ⊆ K, where p = ch(K).
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Lecture 21: Simple Extensions

Last lecture, we showed that ∣∣Aut(F/K)
∣∣ ≤ ∣∣∣Hom(F/K,K/K)

∣∣∣ ≤ [F : K],

with the first ≤ being an equality if and only if F/K is a normal extension, and the second ≤ being an
equality if and only if F/K is a simple extension.

Definition 21.1. A field extension F/K is simple if F = K(α) for some α ∈ F .

From our construction of K(α), the simple fields are all the ones of the form K[x]/(f(x)) for irreducible
f(x) ∈ K[x].

It is not always obvious which extensions are simple.

Example 21.2. The field Q(
√
2,
√
3) is a simple extension of Q, because Q(

√
2,
√
3) = Q(

√
2 +

√
3).

Clearly, Q(
√
2 +

√
3) ⊆ Q(

√
2,
√
3). However, we can also see that

√
2 = (

√
2 +

√
3)3 +

1√
2 +

√
3
∈ Q(

√
2 +

√
3),

and then we can express
√
3 as

(√
2 +

√
3
)
−
√
2, so Q(

√
2 +

√
3) ⊇ Q(

√
2,
√
3).

So how would we prove that an extension is not simple?

Theorem 21.3. An algebraic extension F/K is simple if and only if the number of fields E satisfying
K ⊆ E ⊆ F is finite.

Proof. If F/K is simple, we can write F = K(α) for some α. Then, consider any K ⊆ E ⊆ F . If f(x) is the
minimal polynomial of α over K, let fE(x) be the minimal polynomial of α over E.

Claim. If
fE = c0 + c1x+ · · ·+ cn−1x

n−1 + xn,

where c0, . . . , cn−1 ∈ E, then E = K(c0, . . . , cn−1).

First, we can see that K(c0, . . . , cn−1) ⊆ E, since each of these coefficients is an element of E by definition.
Then, we can see that fE(x) is irreducible over K(c0, . . . , cn−1) since it is a subset of E and fE(x) is
irreducible over E. Moreover, since F = K(α) and E ⊆ F , we get that

F = E(α), F = K(c0, . . . , cn−1)(α).

But then fE is the minimal polynomial for α over both, so [F : K(c0, . . . , cn−1)] = [F : E] = deg(fE). But
since

[F : K(c0, . . . , cn−1)] = [F : E][E : K(c0, . . . , cn−1)],

we get that [E : K(c0, . . . , cn−1)] = 1, and E = K(c0, . . . , cn−1).

So we have proved our claim. This implies that the map

E 7→ fE(x)
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is injective. The domain of this map is the set of intermediate fields. But we also have that fE(x) | f(x), so
the number of intermediate fields E is at most the number of factors of f(x) in K[x], which is finite.

To prove the other direction, suppose that the set S = {E | K ⊆ E ⊆ F} is finite. First, this means that
F/K is finitely generated; otherwise we have the infinite chain

K ⊆ K(α1) ⊆ K(α1, α2) ⊆ · · · ⊆ F,

where αi ∈ F \K(α1, . . . , αi−1) for i ≥ 1. But then, each one of the fields in our chain is an element of S,
so S is infinite, which is a contradiction.

Since F/K is a finitely generated algebraic extension, we can see that [F : K] is finite, and therefore if K is
finite, F must also be finite. But this means F× is cyclic (since every finite field is isomorphic to some Fq),
so we can pick a generator α ∈ F×, and then F = K(α).
We are left with the case where K is infinite and F = K(α1, . . . , αn) for some α1, . . . , αn ∈ F . It is enough
to prove that in this case K(α1, α2) is simple, as then we can express this as K(α′

1), and use the same logic
to argue that K(α′

1, α3) is simple, and continue on inductively to see that F = K(α1, . . . , αn) is simple.

For each c ∈ K, consider the field E = K(cα1 + α2) ∈ S. Since K is infinite, there are infinitely many c’s,
but since S is finite, there are only finitely many distinct E’s, so there must be some c1 ̸= c2 ∈ K such that

K(c1α1 + α2) = K(c2α1 + α2).

But then we can see that α1 ∈ K(c1α1 + α2) since

α1 =
(c1α1 + α2)− (c2α1 + α2)

c1 − c2
.

From there, we can see that α2 ∈ K(c1α1 + α2), since

α2 = (c1α1 + c2)− c1α1.

Moreover, it is clear that c1α1 + α2 ∈ K(α1, α2), so

K(α1, α2) = K(c1α1 + α2).

Thus, K(α1, α2) is simple, and repeating this step inductively, we can conclude that F = K(α1, . . . , αn) is
simple.
So, when there are finitely many field extensions E such that K ⊆ E ⊆ F , F/K must be simple.

This is a nice characterization of simple fields, but it is not widely applicable. Next lecture, we will prove a
more applicable theorem.
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Lecture 22: The Primitive Element Theorem and Fixed Fields

Theorem 22.1 (Primitive Element Theorem). If F/K is finite and separable, then it is simple.

Note that this is not an “if and only if” because there are simple extensions that are not separable; see
Example 14.7 for an example of this.

Proof. Remember that if F is finite, then it is a simple extension of K because F× is cyclic, so F = K(α),
where α is a generator of F×.

We consider the case where F , and therefore K, is infinite. Let n = [F : K], since we know it is finite. Since
F/K is separable, we know that ∣∣∣Hom(F/K,K/K)

∣∣∣ = n.

Let {σ1, . . . , σn} be the elements of Hom(F/K,K/K).

Then, since [F : K] = n, we know that F ∼= Kn as a vector space over K. Moreover, each σi is a K-linear
function on F .

For each 1 ≤ i < j ≤ n, set
Si,j =

{
η ∈ F

∣∣ σi(η) = σj(η)
}
.

This is a proper subspace of F since σi ̸= σj .

Then, pick any α ∈ F \
⋃
i<j Si,j . We can do this because if you have an n-dimensional space and m

k-dimensional subspaces (where k < n), then there must exist an element α not in any of the subspaces.

But this means that σ1(α), . . . , σn(α) are all distinct.

Remember that if f(x) is the minimal polynomial of α overK, then since σi maps roots to roots, σ1(α), . . . , σn(α)
are all roots of f(x).

Thus, the minimal polynomial of α over K has degree at least n. So we have that K(α) ⊆ F and [K(α) :
K] = n, so F = K(α), and F must be simple.

The following corollary directly follows from the fact that all finite extensions of perfect fields are separa-
ble.

Corollary 22.2. Any finite extension F/K is simple if ch(K) = 0, or, more generally if K is perfect.

Remember that F/K is a Galois extension if it is normal and separable.

If we are given K, how do we construct a Galois extension F/K?

We can just take the splitting field of a separable polynomial in K[x].

If we are given F , how do we construct a Galois extension F/K?

Definition 22.3. Let F be a field and let G be a subgroup of Aut(F ) (note that this is Aut(F ) and not
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Aut(F/K) because K isn’t defined yet). Then, the fixed field of F in G is the subset

FG =
{
α ∈ F

∣∣ σ(α) = α for all α ∈ G
}
.

Proposition 22.4. FG is a subfield of F .

Proof. We can see that 1 ∈ FG because for all σ ∈ G, σ(1) = 1.

For all α, β ∈ FG, α+ β, αβ ∈ FG because

σ(α+ β) = σ(α) + σ(β) = α+ β

and
σ(αβ) = σ(α)σ(β) = αβ

for all σ ∈ G.

Finally, if α ̸= 0 ∈ FG then α−1 ∈ FG because

σ(α−1) = (σ(α))−1 = α−1

for all σ ∈ G.

Note that our proof holds for any G that is a subset of Aut(F ), not just a subgroup.

Theorem 22.5. For any finite subgroup G ⊆ Aut(F ), [F : FG] = |G|.

Proof. Let K = FG and n = |G|. Then, for nay α ∈ F , consider its G-orbit as G acts on F :

G · α =
{
σ(α)

∣∣ σ ∈ G
}
.

Then, let |G · α| = m. We know that this is finite, since

G · α ⊆ G ⊆ Aut(F/K),

and applying Corollary 20.6, we get that

|G · α| ≤
∣∣Aut(F/K)

∣∣ ≤ [F : K]

which is a finite extension.

Then, m ≤ n and G · α =
{
σ1(α), . . . , σm(α)

}
. Consider the polynomial

f(x) =

m∏
i=1

(x− σi(α)) ∈ F [x].

We can see that for any σ ∈ G, {
σ ◦ σ1(α), . . . , σ · σm(α)

}
= G · α,

since applying a group action should just permute the elements of the orbit. But this means that applying
σ to the coefficients does not change f(x), for any σ ∈ G, so f(x) ∈ K[x].

Then, f(x) is the minimal polynomial of α over K, since all σi(α) would have the same minimal polynomial.
This means that α is separable over K and [K(α) : K] = m.

Since α was arbitrary, the entire extension F/K is separable. Then, since F/K is finite and separable,
the Primitive Element Theorem tells us that F = K(β) for some β ∈ F . But then, we get the chain of
inequalities

|G| ≤
∣∣Aut(F/K)

∣∣ ≤ [F : K] = [K(β) : K] = |G · β| ≤|G| .
So all of these inequalities are actually equalities, and [F : K] = |G|.
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Corollary 22.6. The extension F/FG is a Galois extension and G = Aut(F/FG).

Proof. We showed in the proof of the theorem that F/FG is separable. To see that it is normal, note that
when we showed the last chain of inequalities was actually an equality, we showed that∣∣Aut(F/K)

∣∣ = [F : K]

which by Corollary 20.6 means that F/K is a normal extension. Moreover, we just proved that |G| = [F : K],
which, combined with the above equation, means that∣∣Aut(F/K)

∣∣ = |G| .

But since G ⊆ Aut(F/K), and both are finite groups, the two must be equal.
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Lecture 23: The Fundamental Theorem of Galois Theory

Let K ⊆ F be a finite field extension. Then,

Aut(F/K) =
{
σ ∈ Aut(F )

∣∣ σ(a) = a for all a ∈ K
}

is a subgroup of Aut(F ).

Definition 23.1 (Galois correspondence). For any K ⊆ F and G = Aut(F/K), the functions φ and ψ
are defined as follows

{subfields of F containing K} {subgroups of G}

φ

ψ

where φ(E) = Aut(F/E) ⊆ G and ψ(H) = FH . Note that since H ⊆ G = Aut(F/K), K ⊆ ψ(H).

Note that if K ⊆ E1 ⊆ E2 ⊆ F then φ(E2) ⊆ φ(E1), because if our homomorphism fixes E2, then it fixes E1.

Moreover, if H1 ⊆ H2 ⊆ G then ψ(H2) ⊆ ψ(H1) because everything fixed by all of H2 is also fixed by H1.

So, φ and ψ are inclusion-reversing.

Also, for any subgroup H ⊆ G, Theorem 22.5 tells us that [F : ψ(H)] = |H|.

Proposition 23.2. For any H ⊆ G, φ ◦ ψ(H) = H.

Proof. We know that ψ(H) = FH , so φ ◦ψ(H) = Aut(F/FH). We know that any h ∈ H fixes any α ∈ FH ,
so H ⊆ Aut(F/FH). But by Theorem 22.5,

|H| ≤
∣∣∣Aut(F/FH)

∣∣∣ ≤ [F : FH ] = |H| ,

so these are all equalities and H = Aut(F/FF ).

Thus, φ ◦ ψ(H) = H.

Corollary 23.3. φ is surjective and ψ is injective. Thus, the size of the set of intermediate fields of
K ⊆ F must be at least the size of the set of subgroups of G.

Let us look at some examples of these maps, on various field extensions.

Example 23.4. Consider the field extension Q( 3
√
2)/Q, which is separable but not normal. Remember

that Aut(Q( 3
√
2)/Q) = 1, so that all elements of this group fix all of Q( 3

√
2). Thus,

φ(Q(
3
√
2)) = Aut(Q(

3
√
2)/Q)

φ(Q) = Aut(Q(
3
√
2)/Q)

ψ(Aut(Q(
3
√
2)/Q)) = Q(

3
√
2),
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Example 23.5. Consider the field extension Fp(x)/Fp(xp), which is normal but not separable. Again,
the only element of Aut(Fp(x)/Fp(xp)) is the identity, so we get that

φ(Fp(x)) = 1

φ(Fp(xp)) = 1

ψ(1) = Fp(x),

Example 23.6. Finally, consider the field extension Q(
√
2)/Q, which is normal and separable. We

showed that Aut(Q(
√
2)/Q) ∼= Z/2Z, and we can see that

φ(Q) = Z/2Z

φ(Q(
√
2)) = 1

ψ(Z/2Z) = Q,

ψ(1) = Q(
√
2).

We know that φ ◦ ψ is the identity. How about ψ ◦ φ?

We can see from the above examples that it is not always the identity.

Proposition 23.7. For any K ⊆ E ⊆ F ,

ψ ◦ φ(E) = E

if and only if F/E is a Galois extension.

Proof. For any such E, let G = Aut(F/E). Then, we have that

ψ ◦ φ(E) = ψ(G) = FG.

We know that any α ∈ E is fixed by any σ ∈ G, by definition, so that E ⊆ FG.

Then, Theorem 22.5 tells us that
[F : FG] =

∣∣Aut(F/E)
∣∣ .

But then, we know that by Corollary 20.6 that if F/E is a Galois extension, then
∣∣Aut(F/E)

∣∣ = [F : E], so
we get that

[F : FG] = [F : E],

and since E ⊆ FG, this implies that E = FG.

If F/E is not a Galois extension, then Corollary 20.6 tells us that
∣∣Aut(F/E)

∣∣ < [F : E], so that

[F : FG] < [F : E]

and this implies that E ⊊ FG, so ψ ◦ φ(E) ̸= E.

Theorem 23.8 (Fundamental Theorem of Galois Theory). IF K ⊆ F is a finite Galois extension with
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G = Aut(F/K) then there are bijections

{subfields of F containing K} {subgroups of G}

φ

ψ

which are inverses to each other.

Proof. The only step missing is that if F/K is Galois, then we know that F/E is also normal and separable
for any K ⊆ E ⊆ F .

Moreover, when F/K is a Galois extension, and G = Aut(F/K), then φ and ψ preserve indices. We know
from Theorem 22.5 that for any subgroup H ⊆ G,

|H| = [F : ψ(H)],

which implies that [G : H] = [ψ(H) : K] since |G| = [F : K]. Then, for any K ⊆ E ⊆ F , we can see that
[E : K] = [G : φ(E)], so [F : E] =

∣∣φ(E)
∣∣.

Corollary 23.9. For any finite Galois extension F/K,∣∣{subfields of F containing K}
∣∣ = ∣∣∣{subgroups of Aut(F/K)

}∣∣∣ .
Proof. This follows from the fact that the maps in the Fundamental Theorem are bijections.

Example 23.10. Let us say we have a Galois extension Q(α)/Q. Then, we know that all intermediate
fields Q ⊆ E ⊆ Q(α) are simple, by Corollary 22.2, so they are all of the form Q(αi) for some αi ∈ Q(αi).
Then, we have a partially-ordered set relation among all the intermediate fields, where Q(αi1) ≤ Q(αi2)
if αi1 ∈ Q(αi2).
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Lecture 24: The Galois Correspondences

Definition 24.1. For any field extension, define

P (F/K) = {subfields of F containing K} .

For any group G, define
P (G) = {subgroups of G} .

Then, P (F/K) and P (G) are partially ordered sets under inclusion.

Last time, we showed that if F/K is a finite Galois extension, there are inclusion-reversing isomorphisms of
partially ordered sets:

P (F/K) P (G)

φ

ψ

where G = Aut(F/K). These maps are defined as φ(E) = Aut(F/E) and ψ(H) = FH , so that φ ◦ ψ = id
and because F/K is a Galois extension, ψ ◦ φ = id.

Moreover, φ and ψ preserve indices. That is, for any K ⊆ E ⊆ F , we have the mapping

F 1

E H

K G

and then
[F : E] = [H : 1] = |H| ,

and
[E : K] = [G : H] = |G| /|H| .

Definition 24.2. In a partially ordered set P , the greatest lower bound of a, b ∈ P , denoted a ∧ b,
is an element c ∈ P such that c ≤ a and c ≤ b, but for any c′ ∈ P such that c′ ≤ a and c′ ≤ b, c ≥ c′.

The least upper bound of a and b, denoted a ∨ b, is defined similarly.

Definition 24.3. A partially ordered set P is a lattice if for any a, b ∈ P , the greatest lower bound of
a and b and the least upper bound of a and b exist.

Example 24.4. The following partially ordered set, where a set S ≤ Q iff S ⊆ Q, is a lattice, and we
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see one example of a greatest lower bound and a least upper bound.

{1, 2, 3, 4} = a ∨ b

a = {1, 2, 3} {1, 2, 4} = b

{1, 2} = a ∧ b

{1}

Example 24.5. The following partially ordered set, where an integer x ≤ y iff x | y, is a lattice, and we
see one example of a greatest lower bound and a least upper bound.

12 = a ∨ b

a = 4 6 = b

2 = a ∧ b 3

1

Example 24.6. In the following partially ordered set, where a set S ≤ Q iff S ⊆ Q, we see that it is
not a lattice, because there is no greatest lower bound of the a and b indicated.

{1, 2, 3, 4, 5} = a ∨ b

a = {1, 2, 3, 4} {1, 2, 3, 5} = b

{1, 2} {1, 3}

{1}

Note that for any group G, P (G) is a lattice, since for subgroups H1, H2 ⊆ G, H1 ∧ H2 = H1 ∩ H2 and
H1 ∨H2 = ⟨H1, H2⟩.

Moreover, for any field extension F/K, P (F/K) is a lattice, because E1∧E2 = E1∩E2, and E1∨E2 = E1E2,
where E1E2 is defined to be K(E1, E2), or the field generated by E1 and E2 over K.

Corollary 24.7. The maps φ and ψ are inclusion-reversing isomorphisms of lattices. With some com-
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putation, we can see that

φ(E1 ∧ E2) = φ(E1) ∨ φ(E2)

φ(E1 ∨ E2) = φ(E1) ∧ φ(E2)

ψ(H1 ∧H2) = ψ(H1) ∨ ψ(H2)

ψ(H1 ∨H2) = ψ(H1) ∧ ψ(H2).

Example 24.8. We can consider the splitting field of x3 − 2 over Q; this is a Galois extension. We can
see that it has degree 6 because we have the chain of extensions

Q( 3
√
2, 3

√
2η, 3

√
2η2)

Q( 3
√
2)

Q

2

3

where η = e2iπ/3. Then, by Corollary 20.6, we can see that
∣∣∣Aut(Q( 3

√
2, 3

√
2η, 3

√
2η2)/Q)

∣∣∣ = 6. But we

also know that all automorphisms of this extension are defined by permutations of the roots, so

Aut(Q(
3
√
2,

3
√
2η,

3
√
2η2)) ⊆ S3.

Since |S3| = 6, we get that

Aut(Q(
3
√
2,

3
√
2η,

3
√
2η2)/Q) ∼= S3.

Then, we can see that P (S3) is the following lattice:

S3

〈
(1, 2, 3)

〉
〈
(1, 2)

〉 〈
(1, 3)

〉 〈
(2, 3)

〉

1

3

2
22

3 3
3

2
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and P (Q( 3
√
2, 3

√
2η, 3

√
2η2)/Q) is the following lattice (note that Q( 3

√
2, 3

√
2η, 3

√
2η2) = Q( 3

√
2, η)):

Q( 3
√
2, η)

Q( 3
√
2) Q( 3

√
2η) Q( 3

√
2η2)

Q(η)

Q

33

2 2
2

3

2

3

which we can see is an upside-down version of the previous lattice.

Example 24.9. We can consider the splitting field of x4 + 1 over Q, which we know is also a Galois
extension. Specifically, it is the extension Q(η)/Q, where η is a primitive 8th root of unity. We know
that

Aut(Q(η)/Q) ∼= (Z/8Z)× ∼= (Z/2Z)× (Z/2Z),

and that this automorphism group consists of the elements

η 7→ η, η 7→ η3, η 7→ η5, η 7→ η7.

Then, we have the following lattices, since, as we showed in Example 10.2, Q(η) = Q(
√
2, i).

Z/2Z× Z/2Z

〈
(0, 1)

〉 〈
(1, 1)

〉 〈
(1, 0)

〉
1

2
2

2

2
22

Q(
√
2, i)

Q(
√
2) Q(i

√
2) Q(i)

Q

2
2

2

2
22

Example 24.10. Finally, remember that F212/F2 is a Galois extension, as we showed in Example 20.8.
Moreover, remember that since [F212 : F2] = 12, Theorem 17.1 tells us that Aut(F212/F2) ∼= Z/12Z.

Then, we can see that P (Z/12Z) is:

Z/12Z

Z/4Z Z/6Z

Z/2Z Z/3Z

1

3 2

2 3

2

3

2
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and by matching degrees to the previous diagram, we get that P (F212/F2) is:

F212

F26 F24

F23 F22

F2

2 3

3

22

23

If we have the field extensions

K

F1F2

F1 F2

F1 ∩ F2

K

where F1/K and F2/K are Galois extensions, we know that the corresponding group lattice looks something
like this (if G1 is the automorphism group of F1 and G2 is the automoprhism group of F2):

?

?

G1 G2

G1 ∩G2

1

because G1 ∩G2 is clearly the automorphism group of F1F2. What goes in the question marks?

We know that we have the isomorphisms

P (F/K) P (G)

φ

ψ

Note that P (G) admits a G-action
g ·H = gHg−1.

That is, G acts by conjugation on the subgroups of G; remember from Math 120 that this leads to the Sylow
theorems and the classification of finite subgroups.
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The poset P (F/K) also admits a G-action
g · E = g(E)

since g is an automorphism of F over K. Thus, we can prove that this diagram commutes

Theorem 24.11. The Galois correspondences φ and ψ are isomorphisms of G-sets.

What we mean by this is that for any σ in G, and any E ∈ P (F/K) and H ∈ P (G),

φ(σ · E) = σ · φ(E)

ψ(σ ·H) = σ · ψ(H).

We will prove this next lecture, but for now let’s look at an example of where this theorem is applicable.

Example 24.12. Remember our field extension Q( 3
√
2, η)/Q, where G = S3.

Remember that since Z/3Z is a subgroup of S3 with index 2, it is a normal subgroup of S3.

Moreover, note that the other three subgroups, which are all isomorphic to Z/2Z, are in the same G-orbit.

So if we look at P (Q( 3
√
2, η),Q), we can see that for any g ∈ G,

g ·Q(η) = Q(η),

while the other three subfields: Q( 3
√
2), Q( 3

√
2η), and Q( 3

√
2η2) are conjugate.

We can actually see that since all the automorphisms of Q( 3
√
2, η)/Q fix Q(η), and all the automorphisms

of Q/Q fix Q( 3
√
2), η) (since it is a Galois extension), so Q(η)/Q is a normal extension.

This logic works for any normal subgroup of a general P (G), so we have found a relation between normal
subgroups and normal extensions.
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Lecture 25: Galois Correspondences and Normal Extensions

As promised, we will begin this lecture by proving Theorem 24.11.

Proof of Theorem 24.11. We want to show that φ and ψ are isomorphisms of G-sets. We already know that
they are bijections, and we want to show that they are homomorphisms of G-sets. That is, for any σ ∈ G,
and for any subgroup H of G and subfield K ⊆ E ⊆ F ,

Aut(F/σ(E)) = σAut(F/E)σ−1,

and
FσHσ

−1

= σ(FH).

Since we already know that the two are inverses, we actually just need to prove one of the two statements,
since this will imply the other. We will prove that

FσHσ
−1

= σ(FH)

for all σ ∈ G and subgroups H ⊆ G.

Claim. σ(FH) ⊆ FσHσ
−1

This is true because we can express any element in σ(FH) as σ(α), for some α ∈ H. But then, for any
element σhσ−1 ∈ σHσ−1,

σhσ−1 · (σ · α) = σh · α = σα

since we know that h fixes α. But this means that σhσ−1 fixes σ(α) for any h ∈ H, which means that

σ(α) ∈ FσHσ
−1

.

Since this is true for all elements σ(α) ∈ σ(FH), we get that

σ(FH) ⊆ FσHσ
−1

.

Claim. σ(FH) = FσHσ
−1

We only need to check that [σ(FH) : K] = [FσHσ
−1

: K], or equivalently that

[F : σ(FH)] = [F : FσHσ
−1

].

Note that since σ is an isomorphism, [F : σ(FH)] = [F : FH ]. But then, by Theorem 22.5, we get that

[F : σ(FH)] = [F : FH ] = |H| .

Similarly, by Theorem 22.5,

[F : FσHσ
−1

] =
∣∣∣σHσ−1

∣∣∣ .
But conjugation is a bijection, so

∣∣σHσ−1
∣∣ = |H|, and we are done.

Now, let’s think about the set of fixed points of the G-action. Recall that a fixed point under conjugation is
a normal subgroup H �G.

Which intermediate fields of F/K are fixed under the G-action?
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Proposition 25.1. Let F/K be a finite Galois extension and let G = Aut(F/K). Let H be a subgroup
of G and E = ψ(H) be an intermediate field of F/K.

Then, H �G if and only if E is a normal extension of K.

Note that E is always separable over K, since F/K is separable. Thus, if E is a normal extension of K,
then it is also a Galois extension.

Proof. Remember that H is a normal subgroup of G if and only if it is fixed under conjugation, which is
equivalent to

σ(E) = E

for all σ ∈ G.

Thus, we will prove that E/K is normal if and only if σ(E) = E for all σ ∈ G.

For the first direction, note that if E/K is normal, then by Theorem 13.7, f(E) = E for all automorphisms
f : K/K → KK. But this implies that σ(E) = E for all automorphisms σ : F/K → F/K, which is what
we wanted to show.

For the second direction, if σ(E) = E for all σ ∈ G, then the restriction map

r : Aut(F/K) → Aut(E/K)

σ 7→ σ|E

is a group homomorphism. Observe that ker(r) = Aut(F/E). Moreover, we know that r : G/ ker(r) →
Aut(E/K) is an injective map. So,∣∣Aut(F/K)

∣∣ /∣∣Aut(F/E)
∣∣ ≤ ∣∣Aut(E/K)

∣∣ ≤ [E : K].

But since F/K is Galois, and this implies F/E is Galois, the left-hand side equals [F : K]/[F : E] = [E : K].
So we get that

[E : K] ≤
∣∣Aut(E/K)

∣∣ ≤ [E : K],

so these must be equalities, and therefore by Corollary 20.6, E/K is Galois and therefore normal.

Corollary 25.2. Note that the last part of this proof implies that r is also surjective, so any automor-
phism in Aut(E/K) can be extended to an automorphism of F/K.

Proposition 25.3. Suppose E/K is Galois and H �G is a normal subgroup of G, with φ(E) = H and
ψ(H) = E. Then, Aut(E/K) ∼= G/H.

Proof. Remember from the proof of the theorem above that we have

G

G/ ker(r) Aut(E/K)

π

r

where r is an isomorphism. But we also showed that ker(r) = Aut(F/E) = H. So we get that G/H ∼=
Aut(E/K), as we desired.
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Corollary 25.4. Any subfield of the cyclotomic extensionQ(µ[m])/Q is the splitting field of a polynomial
in Q[x]. (Moreover, we can replace Q with a general field K, and the statement still holds.)

Proof. Remember that Aut(Q(µ[m])/Q) is isomorphic to a subgroup of (Z/mZ)×, which is abelian. Thus,
all intermediate fields of Q(µ[m])/Q correspond to subgroups of an abelian group, which are normal, and
therefore these intermediate fields must all be normal extensions.

A further conclusion is that 3
√
2 is not contained in any Q(µ[m]), because then Q( 3

√
2) would be a subgroup

of Q(µ[m]) and we know that 3
√
2 is not normal.

Theorem 25.5. For any finite abelian group G, there is a polynomial in Q[x] whose Galois group is
isomorphic to G.

Proof. Note that G appears as a quotient of the group

Z/(p1 − 1)Z× Z/(p2 − 1)Z× · · · × Z/(pn − 1)Z

for some list of distinct primes p1, . . . , pn.

Let m = p1 · · · pn. Then, we know that

(Z/mZ)× = Z/(p1 − 1)Z× Z/(p2 − 1)Z× · · · × Z/(pn − 1)Z

and there exists some subgroup H ⊆ (Z/mZ)× such that (Z/mZ)×/H ∼= G.

Now, consider the field Q(µ[m]). We have the diagram

Q(µ[m]) 1

Q(µ[m])H H

Q (Z/mZ)×

Moreover, since H is a subgroup of an abelian group, it is a normal subgroup of (Z/mZ)×, which means
that E = Q(µ[m])H is a normal extension of Q, so E is the splitting field of some polynomial f(x) ∈ Q[x].

Moreover, we know that by Proposition 25.3,

Aut(E/Q) ∼= (Z/mZ)×/H ∼= G,

so the Galois group of f(x) is isomorphic to G.
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Lecture 26: Constructability III and Extensions by Radicals

We return to looking at straightedge and compass constructions.

First, note that if we have any two points (x1, y1) and (x2, y2), we can construct their midpoint by drawing
the blue line, then drawing the green circles, and finally drawing the purple line and looking at its intersection
with the blue line:

We will use this fact in various places in this lecture.

Recall that Theorem 8.3 tells us that if α is contstructible, then [Q(α) : Q] = 2r for some nonnegative integer
r. In essence, this is because we are creating at most a quadratic extension at each step of the construction.

In fact, the following converse holds:

Theorem 26.1. For any sequence of field extensions

R ⊇ Fn ⊇ · · · ⊇ F0 = Q,

where [Fi : Fi−1] = 2 for all 1 ≤ i ≤ n, any α ∈ Fn is constructible.

Proof. First, we will show that if the basis of our field is constructible, then any element of our field is
constructible. To do so, we need to show that all the field operations are constructible; if we have two
points a, b that are constructible, we can construct a+ b, −b, ab, and b−1. We will go through each of these
operations:

• To construct −b, we draw the circle centered at (b, 0) and containing (0, 0). This next intersects the
axis at (−b, 0).
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• To construct a + b, we first find the midpoint of (a, 0) and (b, 0) as mentioned above. Then, we can

draw the circle centered at
(
a+b
2 , 0

)
and containing the point (0, 0), and this circle next intersects the

x-axis at the point (a+ b, 0).

(the following two constructions are from Adam Inamasu)

• To construct the product of two elements x and y, we first draw lines at a given angle from (1, 0) and
(y, 0). (Remember that we can construct, e.g, a 60◦ angle by drawing an equilateral triangle.) Then,
mark off the point where the line through (1, 0) meets the circle passing through (x, 0) and centered
at (0, 0); this is a line segment AC of length x. We can extend this line segment to pass through our
line though (y, 0); this gives us a line segment AE which by similar triangles must have length xy.

If we want the point (xy, 0) from here, we can simply draw the circle centered at A and passing through
E.

• We construct x/y in a similar way. First, draw a line at an arbritary angle from (1, 0), and mark off
the point C where this line intersects the circle centered at (0, 0) with radius y. Then, extend the
line AC to intersect the circle centered at (0, 0) with radius x. We will call this intersection point E.
Then, draw a line passing through E but parallel to BC, and this intersects the axis at (x/y, 0), as we
wanted.
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This implies that all of Q is constructible, because we know we can obtain any element in Q by applying
these operations to 1 and 0. Moreover, we can see that for any i, if Fi = Fi−1(α), then if α and all of Fi−1

are constructible, then all of Fi is constructible. So all we need to show now is that we can construct our
field extensions; specifically, we need to find such an α for each i, and show that α is constructible.

First, note that since it is a quadratic extension, we can say that Fi = Fi−1(α) for any α ∈ Fi \Fi−1. Then,
let x2 + bx+ c be the minimal polynomial of α over Fi−1. Then, if we set δ = b2 − 4c, the quadratic formula
tells us that

Fi−1(α) = Fi−1(
√
δ) = Fi.

So we can always write Fi as Fi−1(
√
δ), where δ ∈ Fi−1. It is enough to show that if δ is constructible,

√
δ

is also constructible. If δ > 1, we can construct
√
δ as follows:

Similarly, if δ < 1 (the case where δ = 1 is obvious), we can construct
√
δ by first constructing the black

points and the vertical line in the below diagram, and then constructing the blue point as the midpoint
between (1, 0) and (−δ, 0) and the blue circle as the circle centered at the blue point and containing (1, 0),
and finally we can see by the Pythagorean Theorem that the purple point is exactly (0,

√
δ).

Thus,
√
δ is constructible, and it follows that any point in this chain is constructible.
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Theorem 26.2. The regular n-gon is constructible if and only if φ(n) is a power of 2.

Proof. We showed the “only if” part in Theorem 19.1.

Now, we will show the converse. Remember that the regular n-gon is constructible if and only if (xn, yn) is
constructible, where ηn = xn + iyn is a primitive nth root of unity.

Suppose φ(n) = 2ℓ for some ℓ. We have that

Q(ηn) ⊇ Q(xn) ⊇ Q(ηn + η−1
n ).

Note that
η2n − 2xnηn + 1 = 0,

so the degree of Q(ηn) over Q(xn) is at most 2. Since i ∈ Q(ηn) but i ̸∈ Q(xn), we have that [Q(ηn) :
Q(xn)] = 2.

Remember that Aut(Q(ηn)/Q) ∼= (Z/nZ)×, so it is an abelian group of order 2ℓ.

This means that all subgroups of this autormophism group are normal, so, specifically, Aut(Q(ηn)/Q(xn))
is normal and therefore Q(xn)/Q is a Galois extension. Additionally, Aut(Q(xn)/Q) = 2ℓ/2 = 2ℓ − 1.

Then, the Fundamental Theorem of Finitely Generated Abelian Groups tells us that

Aut(Q(xn)/Q) ∼= (Z/2k1Z)× · · · × (Z/2knZ),

for some k1, . . . , kn.

But since our group has this structure, we can find a chain of subgroups

1 ⊆ G1 ⊆ G2 ⊆ · · · ⊆ Gt = Aut(Q(xn)/Q),

where [Gi : Gi−1] = 2 for each i.

But this means there are subsets

Q(xn) = Ft ⊇ · · · ⊇ F2 ⊇ F1 ⊇ F0 = Q,

where [Fi : Fi−1] = 2 for all 1 ≤ i ≤ t.

But from Theorem 26.1, we get that xn is constructible. But then, we can see that if we have the point
(xn, 0), then by drawing the blue circle and then the vertical green line, we can construct the point (xn, yn):

Thus, we have constructed the n-gon.

Note that the chain of subgroups we used is related to and is actually a demonstration of the solvability of
the abelian group.
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Corollary 26.3. If p is a prime, then a regular p-gon is constructible if and only if p is a Fermat prime.

(You could theoretically extract a specific construction of the regular p-gon using the chain of subgroups.)

Definition 26.4. Let F/K be a field extension. Then, α ∈ F is radical over K if αn ∈ K for some n.

Definition 26.5. We say that F/K is an extension by radicals if there are intermediate fields

K = F0 ⊆ F1 ⊆ · · · ⊆ Fr = F

such that for each 1 ≤ i ≤ r, Fi = Fi−1(α) for some α that is radical over Fi−1.

Definition 26.6. We say f(x) ∈ K[x] is solvable by radicals if there is an extension by radicals F/K
that contains all the roots of f(x).

Example 26.7. Every quadratic f(x) ∈ K[x] is solvable by radicals if ch(K) ̸= 2. This is because if we
let f(x) = x2 + bx+ c, then we know that the splitting field of f(x) over K is a subfield of K(

√
b2 − 4c),

so this contains all the roots of f(x) and it is clearly an extension by radicals.

Theorem 26.8. For any field K such that ch(K) ̸= 2, 3, every cubic f(x) ∈ K[x] is solvable by radicals.

Proof. First, note that f(x) is solvable by radicals if and only if f(x + b) is solvable by radicals, for some
b ∈ K. So by using this linear shift, we can write every cubic as

x3 + px+ q = 0

for some p, q ∈ K .
But then, we can see that

α =
3

√
−q
2
+

√
q2

4
+
p3

27

and

β =
3

√
−q
2
−

√
q2

4
+
p3

27

are both roots of this polynomial, and clearly α and β are both solvable by radicals. Moreover, we can see
that

αβ =
3

√
q2

4
− q2

4
− p3

27
= −p

3
,

so by Vieta’s, the remaining root of the cubic is −α− β, which would already be an element of K(α, β).

Thus, this polynomial is solvable by radicals.

The following is also known to be true, though we will not prove it in this class:

Theorem 26.9. Every quartic f(x) ∈ K[x] is solvable by radicals.
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Lecture 27: Solvable Groups and Solvability by Radicals

When is a polynomial f(x) ∈ K[x] solvable by radicals?

We have the following theorem.

Theorem 27.1. Suppose ch(K) = 0. Then, a polynomial f(x) ∈ K[x] is solvable by radicals if and only
if the Galois group of f(x) over K is solvable.

In a sense, for a polynomial to be solvable, we want its Galois group to be nearly abelian.

We will prove this theorem in the next lecture, but for now we will look at some examples.

What is the Galois group of xn − b ∈ K[x]?

(Assume ch(K) ̸| n, so that xn − b is separable.)

Proposition 27.2. For any field K, the Galois group of xn − b over K[x] is solvable.

Proof. We will divide this proof into two cases.

Case 1: K contains a primitive nth root of unity.
Let η be this primitive nth root, so that ηn = 1. Then, if α is a zero of f(x) = xn − b, then the set of roots
of f(x) is {

α, αη, . . . , αηn−1
}
.

Thus, F = K(α) is the splitting field of f(x). Then,

Aut(F/K) = {σ0, . . . , σn−1} ,

where σi(α) = αηi for each i. We can see that for any i, j,

σiσj(α) = σi(αη
j)

= σi(α)σi(η)
j

= αηi+j ,

since η ∈ K, so σi(η) = η. Thus, this group is Z/nZ and therefore abelian.

Case 2: K does not contain a primitive nth root of unity.
If α is a root of f(x), then the set of roots of f(x) are{

α, αη, . . . , αηn−1
}
.

Then, we have the diagram

F = K(α, η) 1

K(η) H = Aut(F/K(η)

K G = Aut(F/K)
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It should be clear that all of these are normal extensions. Moreover, we can see that Aut(F/K(η)) = H is
abelian by Case 1, and Aut(K(η)/K) ∼= G/H is abelian since it is a subgroup of (Z/nZ)×. But this means
that G is a solvable group, since we can decompose it into

1�H �G,

and each composition factor is normal.

So, either way, the Galois group is solvable.

Example 27.3. Consider the polynomial xp − 2 ∈ Q[x], where p is prime. We have the following
decomposition:

F = Q( p
√
2, η)

Q(η) Q( p
√
2)

Q

p p−1

p−1 p

where we can solve for the top two degrees by the fact that [F : Q] ≤ p(p− 1), since p
√
2 has a minimal

polynomial of degree p over Q and η has a minimal polynomial of degree p− 1 over Q.

Then, we know by Corollary 20.6 that G = Gal(F/Q) has |G| ≤ p(p = 1).

For 0 < a < p and 0 ≤ b < p, define σab ∈ G to be the automorphism over Q defined by

σab (
p
√
2) =

p
√
2ηb, σab (η) = ηa.

Note that we have the short exact sequence

1 −→ Fp −→ G −→ F×
p −→ 1.

But G is not abelian, since

σa1b1 σ
a2
b2
(

p
√
2) = σa1b1 (

p
√
2)σa1b1 (η)

b2

=
p
√
2ηb1ηa1b2

=
p
√
2ηa1b2+b1 ,

and
σa1b1 σ

a2
b2
(η) = σa1b1 (η

a2) = ηa1a2 .

This means that σa1b1 σ
a2
b2

= σa1a2a1b2+b1
, and clearly this is not abelian since a1b2 + b1 ̸= a2b1 + b2 in general.

We can think of this as the group of affine transformations over Fp since we can map each σba to a map
Fp → Fp defined by x 7→ ax + b (where a ̸= 0). In terms of matrices, this is the group of invertible
matrices over Fp of the form [

a b
0 1

]
,

and it has a normal subgroup H, which is the group of triangulations over Fp, of the form[
1 b
0 1

]
.
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This group is isomorphic to Fp, since we are restricted to choosing b ∈ Fp.

Then, G/H ∼= F×
p , because it corresponds to the set of possible options for a, and it is abelian.

We turn to talking about solvable groups - this is a review of Math 120.

Let G be a finite group.

Definition 27.4. A composition series of G is a sequence of subgroups

H0 �H1 � · · ·�G

so that Hi−1 is normal in Hi. It is the sequence of this form with the maximum length.

The maximality condition is equivalent to the condition that Hi/Hi−1 is a simple group; this is because
Hi/Hi−1 has no normal subgroups if and only if there is no H such that Hi−1 �H �Hi.

Definition 27.5. The simple groups Hi/Hi−1 are called the composition factors of G.

Theorem 27.6 (Jordan-Hölder). The isomorphism classes of the composition factors and their multi-
plicities only depend on G and not the chosen composition series.

We can look at some examples of dividing a group into its composition series:

Example 27.7. When G = S3, we have the composition series

1�A3 � S3.

But S3/A3
∼= Z/2Z and A3

∼= Z/3Z.

Example 27.8. We have a few more examples, in the form of diagrams:

Z/6Z

Z/2Z Z/3Z

1

Z/2ZZ/3Z

Z/2Z Z/3Z
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S4

A4

{1, (12)(34), (13)(24), (14)(23)}

〈
(12)(34)

〉 〈
(13)(24)

〉 〈
(14)(23)

〉

1

Z/2Z

Z/3Z

Z/2Z
Z/2Z

Z/2Z

Z/2Z
Z/2ZZ/2Z

We see that many times, the composition factors are Z/pZ.

Definition 27.9. A finite group G is solvable if all of its composition factors are cyclic.

Since we know the composition factors are all simple groups, we can see that if G is solvable, all of its
composition factors are Z/pZ for prime p.

We already showed that the Galois groups Gal(F/K), where F is the splitting field of xn− b over K, are all
solvable groups.

We now return to proving our actual theorem.

Proof of Jordan-Hölder. First, we need to show that such a composition series exists. To do so, we use
induction on the size of G.

The base case is when G is the trivial group, and then the composition series is just G itself.

For the inductive case, for any G, let N be the largest normal subgroup of G. We know that N exists because
there is at least one normal subgoup of G, {1}, and since G is finite this means there must be a largest one.
But then, we can see that G/N is simple because if H �G/N then the fourth isomorphism theorem would
tell us that there exists some H ′ such that H ′/N = H and N �H ′ �G. Thus, G/N is simple, and we know
by induction that N has a composition series, so we have a composition series for G.

For the uniqueness of composition factors, we will again use induction.

For a base case, if G is simple then clearly
1�G

is the only composition series.

For the inductive case, assume we have two composition series for G:

1�H1 �H2 · · ·�Hr �G

1�K1 �K2 · · ·�Ks �G.

First, if Hr = Ks then we know that G/Ks = G/Hr and we know by the inductive assumption that the
composition factors leading up to Hr are some permutation of the composition factors leading up to Ks.
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Otherwise, define H = Hr, K = Ks, and L = H ∩K. The second isomorphism theorem tells us that L�H
and L�K, and G/H ∼= K/L and G/K ∼= H/L.

Then, note that L must have some composition series

1� L� · · ·� Lt � L.

But this means that

1� L� · · ·� Lt � L�H

1� L� · · ·� Lt � L�K

are composition series. But by the inductive assumption, we know that the composition factors of H are
unique up to permutation, so that r = t+ 1 and the composition factors of H are some permutation of(

H/L,Lt/Lt−1, . . . , L1/1
)

and similarly, the composition factors of K are unique up to isomorphism, so s = t+ 1 and the composition
factors of K must be some permutation of(

K/L,Lt/Lt−1, . . . , L1/1
)
.

Then, we can return to our two composition series

1�H1 �H2 · · ·�H �G

1�K1 �K2 · · ·�K �G.

We can see that the composition factors for the first series are some permutation of(
G/H,H/L,Lt/Lt−1, . . . , L1/1

)
and the composition factors for the second series are some permutation of(

G/K,K/L,Lt/Lt−1, . . . , L1/1
)
.

But since G/H ∼= K/L and G/K ∼= H/L, these two are permutations of each other, and since this is true for
any two composition series for G, we get that the composition factors for G are unique up to permutation.
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Lecture 28: Galois Groups and Solvability by Radicals

Let K be a field, such that ch(K) = 0.

Last time, we stated Theorem 27.1, which says that a polynomial f(x) ∈ K[x] is solvable by radicals if and
only if the Galois group of the polynomial is solvable.

We will only prove one direction of this statement: that if f(x) ∈ K[x] is solvable by radicals, then the
Galois group is solvable.

Proof. Let F/K be an extension by radicals containing the splitting field of f(x) ∈ K[x]. This means we
have some chain of field extensions

K = F0 ⊆ F1 ⊆ · · · ⊆ Fn = F,

with Fi = Fi−1(αi) such that there is some natural number ni such that αni
i ∈ Fi−1.

We want to show that the Galois group of f(x) is solvable.

If F/K is a Galois extension, we proceed as follows.

First, set m =
∏
i ni and let η be a primitive mth root of unity over K. Then, consider the extensions

F (η)

F K(η)

K

We can see that the green extension is Galois because it is the splitting field of a perfect field, and the blue
extension is Galois by assumption.

Then, note that in general, if A/K and B/K are Galois with ch(K) = 0, then A/K corresponds to Aut(F/A)
and B/K corresponds to Aut(F/B), which are both normal subgroups of Aut(F/K). But this means that
Aut(F/A)∩Aut(F/B) is a normal subgroup of Aut(F/K), which means that AB/K is a normal extension,
and since K is perfect, it must also be separable.

This implies that F (η) = FK(η) is also a Galois extension of K.

We then have the extension by radicals

K ⊆ K(η) = F0(η) ⊆ F1 ⊆ · · · ⊆ Fn = F ⊆ Fn+1 = F (η),

so we have extended our previous sequence by 1.

Note that Fi(η) is the splitting field of xni − αni
i over Fi−1(η)[x]. Since these are splitting field extensions

over perfect fields, each Fi(η)/Fi−1(η) is a Galois extension. This implies that F (η)/K is also a Galois
extension.

Let E be the splitting field of f(x) over K, so that we have E ⊆ F ⊆ F (η).
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For each i, let Hi be the corresponding group for Fi(η), so that

Hi = Aut(Fn(η)/Fi(η)).

Moreover, let H be the corresponding group for E, so

H = Aut(Fn(η)/E)

and then the Galois group of E is G = Aut(F (η)/K)/H.

Note that since each Fi(η)/Fi−1(η) is a normal extension, Hi � Hi−1 for each i. Moreover, for each i, we
can see that

Hi/Hi−1 = Aut(Fi(η)/Fi−1(η))

is the Galois group for xni − αni
i over Fi−1(η); we showed in Proposition 27.2 that this group is solvable.

But then since we have expressed Aut(Fn(η)/K) as a chain of normal subgroups whose quotients are solv-
able, we get that Aut(Fn(η)/K) is solvable as well.

Then, since G is the quotient group of a solvable group, a fact in group theory tells us that G is also solvable,
and we are done.

In this proof, why can we assume that F/K is Galois?

We can always construct something called the Galois closure of F , which is a field containing F which is
Galois over K. We can show that when F/K is an extension by radicals, there exists a Galois closure of F
which is also an extension by radicals.

Let
Hom(F/K,K/K) = {σ1, σ2, . . . , σd}

where d = [F : K]. Note that we know all the roots are distinct because K is a perfect field, so F/K is
separable. Now, consider the extension

L =

d∏
j=1

σj(F )

over K; this is the smallest field containing σi(F ) for all 1 ≤ i ≤ d. If F was normal then each of these
would equal F , and L = F .

Note that L/K is Galois as L is a normal extension. Specifically, we can see that for any σ ∈ Hom(F/K,K/K),

σ(L) =

d∏
j=1

σσj(F ) =

d∏
j=1

σj(F ).

If F = K(α), then L is the splitting field of the minimal polynomial of α over K.

Moreover, L is an extension by radicals over K. That is, we know

F = K(α1, . . . , αm)

where for each 1 ≤ i ≤ m, there exists some natural number ni such that αni
i ∈ K(α1, . . . , αi−1). Then,

L =

d∏
j=1

= K
(
σ1(α1), σ2(α2), . . . , σ1(αm), σ2(α1), . . . , σd(αm)

)
.

But then, note that
σ1(α1)

n1 = σ1(α
n1
1 ) = αn1

1
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since αn1
1 ∈ K, and then

σ1(α2)
n2 = σ1(α

n2
2 ) ∈ σ1(K(α1)) = K(σ1(α1)),

and we can continue inductively, noting that for each i,

σi(α1)
n1 = σi(α

n1
1 ) = αn1

1 ∈ K ⊆ K
(
σ1(α1), σ2(α2), . . . , σ1(αm), σ2(α1), . . . , σi−1(αm)

)
.

Thus, we get that L/K is an extension by radicals.

Thus, for each field F which is an extension by radicals containing the splitting field of f(x), there is a Galois
closure L of F which is still an extension by radicals, so we can make our assumption in the proof that F is
Galois by replacing it with its Galois closure if it is not.

Another group theoretic fact:

Many groups are not soluble.

Example 28.1. The alternating subgroup A5 � S5 is simple, which means it has no nontrivial normal
subgroup. By Jordan-Hölder, if we find one composition series that doesn’t follow the properties of
solvability, our group is not solvable. Consider the composition series

S5 A5 1

We can see that A5 = A5/1 is not abelian, so S5 is not solvable.

Note that the nontrivial proper subgroups of A5 are

None of these are fixed under conjugation, so A5 is simple.

Corollary 28.2. Any polynomial with Galois group A5 or S5 is not solvable by radicals.

Example 28.3. Most polynomials of degree 5 have symmetry group S5. Consider the polynomial

f(x) = x5 − 6x+ 3 ∈ Q[x].

It is irreducible by Eisenstein’s criterion. Thus, 5 | |G| since we start constructing the splitting field of
f(x) by adjoining any of its roots to Q, and this is a degree-5 extension.
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This means that G must contain a 5-cycle when viewed as a subgroup of S5. Note that f ′(x) = 5x4 − 6

contains exactly two real roots: ± 4

√
6
5 . Neither of these are critical points, so the graph of f(x) looks

something like

and there are 3 real roots of f(x).

Then, if F is the splitting field over Q, complex conjugation acts on F by permuting the two complex
roots.

This means that G contains a transposition and a 5-cycle, so it must be the entirety of S5. (This is
because, for any prime p, Sp is generated by a transposition and a p-cycle.)

Thus, x5 − 6x+ 3 is not solvable by radicals.
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