
Math 210a Aditi Talati Fall 2022

Class Notes

These are my notes for Math 210a as taught by Professor Richard Taylor in Fall 2022. The course is an
introduction to abstract algebra, as meant to prepare for quals, and covers rings, category theory, modules,
and homological algebra.

These notes are entirely written by me, and all pictures are either diagrams I made using quiver or pictures
I drew during class, though credit goes to Bradley Moon for sending me content for the lectures that I missed!

Please let me know if you find any errors, typos, or unclear information in these notes - you can contact me
at atalati [at] stanford.edu.
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Lecture 1: Rings, I

We are going to go very quickly over rings, as presumably many people have seen this content before. If you
would like a refresher on rings, there are notes on the Canvas page for review.

Definition 1.1. A ring is a set R, with two elements, 0 and 1, identified, and with two operations,
denoted + and ·.

Furthermore, (R,+, 0) is an abelian group, where we use (−r) to denote the additive inverse of any r ∈ R.

Moreover, · is associative and commutative, and the ring has a multiplicative identity of 1 (and it is
closed under multiplication).

Finally, the distributive property holds: for any r, s, t ∈ R,

r · (s+ t) = r · s+ r · t.

Some people would consider the above to be the definition of “commutative rings with 1,” but for this course
we will assume all rings are commutative and have 1.

Example 1.2. Some examples of rings are:

• the zero ring {0}

• Z

• Q

• R

• C

• Z/nZ

• C[0, 1] (continuous functions f : [0, 1]→ C, where addition and multiplication are done pointwise)

•
{
(a, b) ∈ Z2

∣∣ a ≡ b mod 3
}
where addition and multiplication are done componentwise

Exercise 1.3. Convince yourself that:

For all r ∈ R, −r = −1 · r.

For all r ∈ R, r · 0 = 0.

If 0 = 1 ∈ R, then R = {0}.

Definition 1.4. We say that

R× = {r ∈ R | ∃s ∈ R such that r · s = 1}

is the group of units of R.
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Exercise 1.5. Convince yourself that for any r ∈ R, if such an s exists, it is unique.

Example 1.6. Some examples of the group of units are:

• Z× = {±1}

• Q× = Q \ {0}

• C[0, 1]× = the set of nowhere-zero functions

Definition 1.7. An element r ∈ R is nilpotent if there is some positive integer n such that rn = 0.

Example 1.8. In Z/4Z, 22 = 4 = 0.

Definition 1.9. An element r ∈ R is a zero divisor if there exists a nonzero s ∈ R such that r · s = 0.

Example 1.10. In C[0, 1], the following functions are zero divisors (we can see that f(x)g(x) = 0, but
neither function is the zero function):

Definition 1.11. A ring R is reduced if 0 is the only nilpotent element.

Definition 1.12. A ring R is an integral domain if the set of zero divisors in R is exactly {0}.

Definition 1.13. A ring R is a field if R× = R \ {0}.

If R is a field then it is an integral domain (since units cannot be zero divisors - convince yourself of this).
If R is an integral domain then it is reduced, since all nilpotent elements are zero divisors.

Example 1.14.

• Z is an integral domain

• Q is a field

• Z/6Z is reduced

• Z/4Z is not reduced

• {0} is reduced (It is not a field because R× contains 0 and it is not an integral domain because 0
is not a zero divisor.)
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Definition 1.15. A map ϕ : R→ S is a ring (homo)morphism if it “preserves the ring structure” so
that:

• ϕ(0) = 0

• ϕ(1) = 1

• for all r, s ∈ R, ϕ(r + s) = ϕ(r) + ϕ(s)

• for all r, s ∈ R, ϕ(r · s) = ϕ(r) · ϕ(s)

Exercise 1.16. Convince yourself that the last point implies that ϕ(−r) = −ϕ(r) for all r ∈ R.

Example 1.17.

• the natural inclusion Z ↪→ C

• for any point t ∈ [0, 1], the map C[0, 1]→ C defined by f 7→ f(t)

• the natural inclusion {0} ↪→ Z is NOT a ring homomorphism, since ϕ(1) ̸= 1

• for any ring R, there is a unique homomorphism R→ {0} defined by r 7→ 0 for all r ∈ R

• for any ring R, there is a unique homomorphism Z→ R where:

→ ϕ(0) = 0

→ for positive n ∈ Z, ϕ(n) = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

→ for positive n ∈ Z, ϕ(−n) = −

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times



Definition 1.18. For rings S, R ⊂ S is a subring if R is a ring (so it is closed under addition,
multiplication, and additive inverses) and R contains 0 and 1.

Some ways of constructing new rings:

Definition 1.19. The product of two rings R and S is defined to be

R× S =
{
(r, s)

∣∣ r ∈ R, s ∈ S} ,
where addition and multiplication is defined componentwise (so the additive identity is (0, 0) and the
multiplicative identity is (1, 1)).

Note that the product induces natural morphisms:

π1 : R× S → R π2 : R× S → S
(r, s) 7→ r (r, s) 7→ s

However, there aren’t natural morphisms in the opposite direction, for example:

Example 1.20. The map

Z −→ Z× Z
n 7→ (n, 0)
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is not a ring morphism because 1 doesn’t map to (1, 1).

Lemma 1.21. If T is a ring and f : T → R and g : T → S are ring morphisms, then there exists a
unique f × g : T → R× S such that

π1 ◦ (f × g) = f

π2 ◦ (f × g) = g.

We say that the following diagram commutes:

Note that the above property uniquely characterizes the product, in the sense that if we have some ring U
with this property, U ∼= R× S. We will state this more rigorously and prove it next time.
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Lecture 2: Rings, II

As a reminder, we left of last lecture by defining a universal property of the product. We will now prove
that this uniquely characterizes the product; this proof is important mainly because we will see many proofs
using the same sort of argument throughout this course.

Lemma 2.1. Suppose there exists some ring U with morphisms ρ1 : U → R and ρ2 : U → S with the
same property:

For any ring T with ring morphisms f : T → R and g : T → S, there exists a unique φ such
that

T S

U

R

f

g

ρ1

ρ2φ

this diagram commutes.

Then U ∼= R× S.

Proof. By applying this property of U , taking T = R×S we get that there is a unique α such that the below
diagram commutes; by applying the property of R× S, taking T = U , we get that there is a unique ρ1 × ρ2
such that the below diagram commutes:

R× S S

R U

π1

π2

ρ1

ρ2α
ρ1×ρ2

So we have homomorphisms fromR×S to U and from U toR×S; we need to show that they are isomorphisms.

By applying the universal property to the following commutative diagram:

U S

U

R

ρ1

ρ2

ρ1

ρ2
φ

we know there must be a unique φ that makes the diagram commute. But (check this!) taking φ = idU and
φ = α ◦ (ρ1 × ρ2) both work, so we get that α ◦ (ρ1 × ρ2) = idU .

Similarly, we can apply the universal property to the following commutative diagram

R× S S

R× S

R

π1

π2

π1

π2
φ
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and see that φ = (ρ1 × ρ2) ◦ α and φ = idR×S both work, so by uniqueness, idR×S = (ρ1 × ρ2) ◦ α.

Thus, these two maps are inverses of each other, so they are isomorphisms, and U ∼= R× S.

Note that α is the canonical isomorphism we would come up with when mapping U → R × S; in fact, it is
the unique isomorphism U → R× S with the property that

ρ1 ◦ α = π1

ρ2 ◦ α = π2.

We can construct larger products too:

Definition 2.2. For any (even infinite) index set I where we have a ring Ri for each i ∈ I, we can
construct the product

∏
iRi in the same way.

In fact, it can be shown that this larger product has all the same properties we just showed, but this is kind
of tedious, so we won’t show this in class.

Definition 2.3. For any rings R,S, T and homomorphisms ϕ : R→ T and ψ : S → T , we can form the
relative product

R×T S =
{
(r, s) ∈ R× S

∣∣ ϕ(r) = ψ(t)
}
.

This is a subring of R× S.

The relative product has the universal property that for any ring U and homomorphisms f : U → R and
g : U → S, such that ϕ ◦ f = ψ ◦ g, there exists a unique f × g such that

the above diagram commutes.

Example 2.4. The ring
{
(a, b) ∈ Z2

∣∣ a ≡ b (mod 3)
}
that we mentioned last time is actually the rel-

ative product
Z×Z/3Z Z.

The second way of constructing new rings is polynomial rings.

This is a bit tedious to set up fully formally, but you can check the notes for a formal treatment.

If we have indeterminates xi : i ∈ I, we can form monomials of the form xn1
i1
xn2
i2
· · ·xnk

ik
, where n1, . . . , nk are

nonnegative integers.

Definition 2.5. For rings R, R[xi]i∈I is a polynomial ring, and it is the set of all formal finite sums
of an element of R times a monomial.

Example 2.6. An element of Z[xi]i∈I could look like x1 + 2x21x2.
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Definition 2.7. For rings R, R[[xi]]i∈I is the set of formal power series, which is the same as the
polynomial ring, except we allow infinite sums. This is also a ring.

Note that we always have the trivial embedding

R ↪→ R[xi]i∈I

r 7→ r · 1

Definition 2.8. For any polynomial f(x) ∈ R[x], we define the degree of f (which is −∞ or a nonneg-
ative integer) to be:

deg 0 = −∞

deg
(
a0 + a1x+ · · ·+ adx

d
)
= d if ad ̸= 0.

Lemma 2.9. If R is an integral domain, then for all f(x), g(x) ∈ R[x] deg(f(x)g(x)) = deg(f(x)) +
deg(g(x)).

When not in an integral domain, this can fail:

Example 2.10. In Z/6Z[x], deg(2x+ 1) + deg(3x+ 1) = 2 but

(2x+ 1)(3x+ 1) = 6x2 + 5x+ 1 = 5x+ 1,

so deg((2x+ 1)(3x+ 1)) = 1.

Lemma 2.11. If R is an integral domain then so is R[x] and R[xi]i∈I and R[[xi]]i∈I .

All of these follow from the previous lemma, besides that in the R[[xi]]i∈I case, where our elements don’t
have finite degree, so we instead work with the coefficient of the smallest power of x.

The universal property of polynomial rings is:

Suppose I is an index set and S is a ring, and f : I → S is any function. Moreover, suppose
ϕ : R → S is a morphism. Then, there exists a unique morphism ψ : R[xi]i∈I → S such that
ψ |R= ϕ and for each i ∈ I, ψ(xi) = f(i).

Definition 2.12. For any polynomial f(x) ∈ R[x], if

f(x) = c0 + c1x+ · · ·+ cdx
d cd ̸= 0,

we say that cd is the leading term. If the leading term is 1, we say the polynomial is monic.

Lemma 2.13 (“division algorithm”). If we have polynomials f(x), g(x) ∈ R[x] and g(x) is monic (or
has a unit leading term), then there exists a unique q(x), r(x) ∈ R[x] such that

f(x) = q(x)g(x) + r(x)

and deg(r) < deg(g).

The proof of this is just long division; we will look at an example:
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Example 2.14. In Z[x], we can take f(x) = x4 + 1 and g(x) = x2 + 1. Then, we have the following
division:

so q(x) = x2 − 1 and r(x) = 2.

The third way to construct new rings is quotients.

To talk about quotients we first need to talk about ideals.

Definition 2.15. We call I ⊂ R an ideal of R if

• 0 ∈ I

• for all r, s ∈ I, r + s ∈ I

• for all r ∈ R and s ∈ I, rs ∈ I

We denote this by saying I �R.

Definition 2.16. An ideal is proper if I ⊊ R.

We have the following examples of ideals:

Example 2.17.

• For any ring R, {0}�R, R�R

• (2) = {all even integers}� Z

• if ϕ : R→ S is a morphism and J � S, then

ϕ−1(J) =
{
r ∈ R

∣∣ ϕ(r) ∈ J}�R.

Specifically, kerϕ = ϕ−1(0)�R.

In general this is not true the other way around; for example, the image of (2)� Z in the natural
inclusion Z ↪→ Q is not an ideal of Q since 1/2(2) = 1 is not an element of this image.

However, if ϕ : R→ S is a surjective homomorphism and I �R, then ϕ(I)� S.
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Definition 2.18. If X ⊂ R is a general subset, then the ideal generated by X is

(X) =


n∑
i=1

rixi

∣∣∣∣∣∣ ri ∈ R, xi ∈ X
�R.

Exercise 2.19. Any ideal I �R that contains X must contain (X) as well.
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Lecture 3: Rings, III

Consider ideals I, J �R. We can use these to construct the following ideals:

Definition 3.1. The sum
I + J = {r + s | r ∈ I, s ∈ J}

is an ideal and it is the smallest ideal containing I ∪ J , so we can denote it (I ∪ J).

Exercise 3.2. The intersection I ∩ J is an ideal.

Definition 3.3. The product

IJ =


n∑
i=1

risi

∣∣∣∣∣∣ ri ∈ I, si ∈ J


is an ideal, and it is contained in I ∩ J .

Example 3.4. Consider the ring R = Z and the ideals I = (6) and J = (10). Then

(6) + (10) = (2)

(6) ∩ (10) = (30)

(6)(10) = (60)

Remark 3.5. As a heuristic, using the example of ideals of Z, we can think of:

• I ⊃ J as something like “I | J”

• I + J as something like “gcd(I, J)”

• I ∩ J as something like “lcm(I, J)”

• IJ as something like “IJ”

This is a heuristic because the operations on the right are (mostly) not well-defined for ideals.

Definition 3.6. We call I, J � R comaximal if I + J = R, or equivalently, that there exists some
r ∈ I, s ∈ J such that r + s = 1.

Remark 3.7. As a heuristic, we can think of comaximality as something like “relatively prime.”

Lemma 3.8.

1. If I � Z then I = (n) for some n ∈ Z.

2. If K is a field and I �K[x] then I = (f) for some f ∈ K[x].

Proof.
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1. If I = (0) then it is clearly generated by one element and we are done.

If not, then I contains some nonzero element, and multiplying by −1 if necessary, it contains some
positive element. Let n > 0 be the smallest positive element of I; we can see that I ⊇ (n). Then,
consider any m ∈ I.

By the division algorithm, m = qn + r, for some 0 ≤ r < n. But we can see that r = m − qn, so it
is an element of the ideal, which means r = 0 to not contradict the minimality of n. Then, we have
m = qn, so m ∈ (n), and since this is true for any m ∈ I, I = (n).

2. The proof is very similar. If I = (0) then it is clearly generated by one element and we are done.

If not, then I contains some nonzero element. Let f(x) ̸= 0 be an element of I of minimal degree. We
can make f(x) monic by multiplying by the inverse of the leading term, since K is a field. Moreover,
we can see that I ⊇ (f). Then, consider any g(x) ∈ I.

By the division algorithm, g = qf + r, with deg r < deg f . But we can see that r = g − qf , so it is an
element of the ideal, which means r = 0 to not contradict the minimality of f . Then, we have g = qf ,
so g ∈ (f), and since this is true for any g ∈ I, I = (f).

Let’s look at an example of the division algorithm in practice.

Example 3.9. Consider the ideal I = (1407, 917)� Z. What is the generator of this ideal?

We can use the Eucliden algorithm to see that:

so this ideal contains 7. Moreover, working back up, we can see that 1407 and 917 are both multiples of
7, so I = (7).

Specifically, by working back up, we get that

7 = 89 · 917− 58 · 1407.

Figuring out how to get 7 from the generators in this way will become useful later.

Lemma 3.10. Our ring R is the zero ring if and only if it has exactly one ideal.

Proof. It is clear that the zero ring has exactly one ideal. For the other direction, note that all rings have
the ideals R and (0). For our ring to not have more than one ideal, we must have R = (0).

Lemma 3.11. Our ring R is a field if and only if it has exactly two ideals.
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Proof. For one direction, note that since R is a field it has at least two distinct elements, so R and (0) are
two distinct ideals of R. Moreover, for any I �R, if there is any s ̸= 0 ∈ I, then s−1 ∈ R, so s−1s = 1 ∈ I,
and I = R.

For the other direction, we can see that if there are exactly two ideals, then this is not the zero ring, and for
any s ̸= 0 ∈ R, we must have (s) = R, so 1 ∈ (s), so 1 = rs for some r ∈ R, so s has an inverse. Thus, R is
a field.

Definition 3.12. If I �R then the quotient ring is

R/I = {r + I | r ∈ R} .

Then, we define addition by (r+ I) + (s+ I) = (r+ s) + I and multiplication by (r+ I)(s+ I) = rs+ I.
The zero of our ring is 0 + I, and the one is 1 + I.

Exercise 3.13. We need to check that addition and multiplication is well-defined; that is if r+I = r′+I
and s+ I = s′ + I, then (r + I)(s+ I) = (r′ + I)(s′ + I), and similarly for addition.

To do so, it is easiest to check that if r − r′ ∈ I and s− s′ ∈ I, then rs− r′s′ ∈ I.

Lemma 3.14. If I � R and ϕ : R → S is a morphism with ϕ(I) = {0}, then there exists a unique
ϕ : R/I → S such that ϕ ◦ π = ϕ (where π is the canonical projection map R→ R/I).

R S

R/I

π

ϕ

∃!

As before, this uniquely characterizes R/I.

We can view the first isomorphism theorem as a special case of this; taking I = kerϕ, we get the commutative
diagram:

R S

R/ kerϕ

π

ϕ

∃!

Lemma 3.15. The ideals of the product ring R× S are exactly I × J , where I �R, J � S.

Proof. It is easy to check that all such I × J are actually ideals of R × S. For the other direction: suppose
K �R× S. Then for any (r, s) ∈ K, we can see that

(1, 0) · (r, s) = (r, 0) and

(0, 1) · (r, s) = (0, s)

are elements of K. Thus, K is of the form

(R ∩K)× (S ∩K),

and we leave it as an exercise to check that R ∩K �R and S ∩K � S.
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Lemma 3.16. If I �R then I[x]�R[x].

(However, in this case, R[x] has many ideals that are not of this form, as well, so this does not describe all
ideals of R[x].)

Note that, as we might expect:

• (R× S)/(I × J) ∼= R/I × S/J
We can use the isomorphism (r, s) + I × J 7→ (r + I, s+ J).

• R[x]/I[x] ∼= (R/I)[x]
We can use the isomorphism

∑
rix

i + I[x] 7→
∑

(ri + I)xi.

Checking that these maps are actually isomorphisms is a bit tedious, and we leave this as an exercise.

Lemma 3.17. If I �R then there is a bijection between ideals of R/I and ideals of R containing I.

We can use the map J 7→ π(J), where π is the natural projection map R↠ R/I, and its inverse J 7→ π−1(J).
We leave it as an exercise to check that this is a true bijection, or that the composites of these maps are
really the corresponding identity maps.

Moreover, for any J �R containing I, we have the isomorphism

R/J ∼= (R/I)/π(J)

using the map r + J 7→ r + I + π(J). We leave it as an exercise to check that this is well-defined and an
isomorphism.

A useful corollary is:

Corollary 3.18. For any ideal (r, s)�R,

R/(r, s) ∼= (R/(r))/(s+ (r)) ∼= (R/(s))/(r + (s)).

Lemma 3.19. If I, J �R, then

R/(I ∩ J) ∼= R/I ×R/I+J R/J.

We can use the isomorphism r + I ∩ J 7→ (r + I, r + J). We leave it as an exercise to check that this is an
isomorphism, noting that checking surjectivity is kind of annoying.

Example 3.20.
Z/(30) ∼= Z/(6)×Z/(2) Z/(10).

Lemma 3.21. If I, J �R are comaximal ideals, then I ∩ J = IJ and then previous lemma tells us

R/IJ ∼= R/I ∩ J ∼= R/I ×R/J,

since by definition I + J = R.

Proof. We nust need to prove that IJ = I ∩ J . We know that IJ ⊆ I ∩ J , so we just need to show that for
any x ∈ I ∩ J , we can express x as some

∑
risi, for ri ∈ I and si ∈ J . But we know that there exists some

r ∈ I, s ∈ J such that r + s = 1, by definition of comaximality. This means that we can write

x = x(1) = x(r + s) = xr + xs ∈ IJ,

since this a sum of the form we want. Thus IJ = I ∩ J .
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Example 3.22.
Z/(35) = Z/(5)× Z/(7)

Lemma 3.23 (Chinese Remainder Theorem). If I1, . . . , In�R are pairwise comaximal, then I1 · · · In =
I1 ∩ · · · ∩ In and

R/I1 · · · In = R/I1 × · · ·R/In.

This just requires an inductive proof, using the previous two lemmas.
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Lecture 4: More on Ideals

Definition 4.1. An ideal I � R is maximal if I is a proper ideal of R and it is not strictly contained
in any other proper ideal of R.

Lemma 4.2. An ideal I �R is maximal if and only if R/I is a field.

Proof. This follows from Lemma 3.17 and Lemma 3.11; an ideal I ̸= R is maximal if and only if R ̸= I are
the only two ideals of R containing I, which happens if and only if R/I ̸= (0) are the only two ideals of R/I,
which happens if and only if R is a field.

Definition 4.3. An ideal I �R is prime if I ̸= R and for any r, s ∈ R, rs ∈ I only if r ∈ I or s ∈ I.

Example 4.4. The prime ideals of Z are (0) and (p), where p is a prime integer.

Lemma 4.5. An ideal I �R is prime if and only if R/I is an integral domain.

Corollary 4.6. If I �R is maximal, it is also prime.

Definition 4.7. We say that SpecR = {prime ideals of R}.

Lemma 4.8. If ϕ : R→ S is a ring morphism and J � S is prime then ϕ−1(J) is prime in R.

Proof. We showed in Example 2.17 that ϕ−1J is an ideal of R. Then, we can see that since ϕ(1) = 1, then
if 1 ∈ ϕ−1(J) would imply that 1 ∈ J . Since J is a prime, it is a proper ideal of R; this implies that ϕ−1J
is also a proper ideal of R. To see that it is prime, we can see that for any rs ∈ ϕ−1(J), ϕ(r)ϕ(s) ∈ J , so
either ϕ(r) or ϕ(s) is in J . But this implies that either r ∈ ϕ−1ϕ(r) or s ∈ ϕ−1ϕ(s) is in ϕ−1(J), so this is
prime, and we are done.

This implies that ϕ−1 maps SpecS to SpecR.

Is there a version of the above lemma for maximal ideals?

No, we have the following example:

Example 4.9. Consider the natural inclusion map Z ↪→ Q. We can see that (0) ∈ Q is a maximal ideal,
since Q/(0) = Q is a field. But the preimage of (0) is just (0)� Z, and (0) is not a maximal ideal of Z.

Lemma 4.10. The prime ideals of R× S are of the form I × S, where I �R is prime, or R× J , where
J � S is prime.

Proof. If K � R × S is a prime ideal, then we know from earlier that K = I × J where I � R and J � S.
But then,

(0, 0) = (0, 1) · (1, 0) ∈ K,
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so either (0, 1) ∈ K and J = S or (1, 0) ∈ K and I = R. Since K must be a proper ideal, we know K ̸= R×S.

If J = S, then for any rs ∈ I, we can see that (rs, 1) ∈ K, so either (r, 1) or (s, 1) is in K, so either r or s is
in I, so I is prime, and we can similarly see that J is prime in the case that R = I.

Lemma 4.11. If I �R, then there exists a bijection between prime ideals of R/I and prime ideals of R
containing I, where for any J �R, J 7→ π(J) and for any J �R/I, J 7→ π−1(J), where π is the natural
projection R→ R/I.

Proof. We want to show that π and π−1 map prime ideals to prime ideals.

We know that if J �R/I, π−1(J) is prime, since we showed this in Lemma 4.8.

For the other direction, if J �R is a prime ideal such that I ⊆ J , then if

(r + I)(s+ I) ∈ π(J)

, this means we can find some x ∈ J such that π(x) = rs + I. But this implies that rs − x ∈ I ⊆ J , and
then x + (rs − x) = rs ∈ J . Since J is prime, either r or s is in J , which means either r + I or s + I is in
π(J), as we wanted.

Note that you cannot extend Lemma 4.10 to arbitrary products:

Example 4.12. Consider the product ring R =
∏∞
i=1 Q. For a clever choice of X (a collection of subsets

of Z≥0),
I(X ) =

{
(ri) ∈ R

∣∣ {i | ri = 0} ∈ X
}

is prime, but it is not of the form described in Lemma 4.10. We leave the details of this example as an
exercise.

Lemma 4.13. For a ring R, the following properties are equivalent:

1. Any ideal of R is finitely generated.

2. If X is a nonempty set of ideals of R, then there exists an I ∈ X which is not properly contained
in any I ′ ∈ X (we say that I is a maximal element of X ).

Proof. We will first show that (1) =⇒ (2), by contradiction.

Suppose (2) is false. That is, we can find some X such that for any I ∈ X , there is some I ′ ⊋ I ∈ X . If we
pick an arbitrary I1 ∈ X , we can find I2 ∈ X strictly containing I1, and then we can find I3 ∈ X strictly
containing I2, and so on, so we get the infinite chain

I1 ⊊ I2 ⊊ I3 ⊊ · · · .

Then, we can define I =
⋃∞
i=1 Ii, and we can see that I �R.

But by (1), we can write I = (r1, . . . , rn) for some r1, . . . , rn ∈ R. But since these are a finite number
of elements in I, we must be able to find some N such that r1, . . . , rn ∈ IN ⊂ I. But this implies that
I = (r1, . . . , rn) ⊂ IN , so I = IN , contradicting the fact that

IN ⊊ IN+1 ⊂ I.

Thus, we have reached a contradiction, and if (1) is true, (2) must also be true.

18
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Now, we will show that (2) =⇒ (1).

Consider some I �R. Let X be the set

X = {J �R | J ⊆ I, Jfinitely generated} .

We can see that (0) ∈ X , so it is nonempty, and, applying (2), it must have a maximal element J0. If J0 ̸= I
then there must exist some r ∈ R such that r ∈ I but r ̸∈ J0, but then J0 + (r) would be an element of X
strictly containing J0. Thus, we have J0 = I, and then I must be finitely generated.

Definition 4.14. We say that R is noetherian if these equivalent properties hold.

Example 4.15.

• Z is noetherian

• if K is a field, then K and K[x] are noetherian

• any PID is noetherian

Example 4.16. The ring C[X1, X2, . . .] is not noetherian because the ideal (X1, X2, . . .) is not finitely
generated (any finite generating set will cover only finitely many of the Xi’s).

Lemma 4.17. If R and S are noetherian, then so is R× S.

Lemma 4.18. If R is noetherian and I �R, then R/I is noetherian.

Since we know exactly what the ideals of the product and quotient rings look like, we just need to check that
these ideals are finitely generated. This follows from the fact that ideals of R and S are finitely generated,
and is left as an exercise.

Remark 4.19. If R,S, T are noetherian rings, R×T S is not necessarily noetherian.

Lemma 4.20 (Hilbert’s Basis Theorem). If R is noetherian then so is R[x] (or R[x1, . . . , xn] for any
finite n).

Proof. We will show that any I �R[x] is finitely generated. Consider the set

Ld =
{
r ∈ R

∣∣∣ r is the xd coefficient of some f ∈ I of degree d
}
.

Note that Ld �R, and Ld ⊆ Ld+1 since if f ∈ I then so is xf .

Since R is noetherian, we know that the set {Ld} must have some maximal element LN , and then

LN = LN+1 = · · ·

But we know that each Ld is finitely generated, so we can find fd1 , . . . , fdsd ∈ I whose x
d coefficients generate

Ld. (We choose this generating set to be xd−NfN1
, . . . , xd−NfNsN

when d > N .) Then, consider the ideal

J = (f01 , . . . , f0s0 , f11 , . . . , fNsN
) ⊆ I.
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We claim that I = J . We can see that if I ̸= J , then there must be some g ∈ I − J of minimal degree d.
But we know that, if g has leading term cdx

d, then cd ∈ Ld by definition, so there exists some ri’s such that∑sd
i=1 rifdi has leading term cdx

d as well. But this means

g −
sd∑
i=1

rifdi

is also in I − J , and is of smaller degree, which is a contradiction.

Thus, I = J , and I is finitely generated. Since this is true for all I �R[x], R[x] is noetherian.
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Lecture 5: Rings, IV

Remark 5.1. Last time, we showed that if R is noetherian, then so is R[x]. It is also true that R[[x]] is
noetherian in this case; the proof is very similar, but using the coefficient of the lowest term rather than
the coefficient of the largest term.

Definition 5.2. A ring S is said to be finitely generated over R if there is a ring morphism ϕ : R→ S
such that we can find a finite subring X ⊂ S such that S has no proper subring strictly containing imϕ
and X.

Equivalently, S is finitely generated if there is some finite set X ⊂ S such that X = {x1, . . . , xn}
and we have a surjective homomorphism ψ : R[X1, . . . , Xn] → S where for r ∈ R, ψ(r) = ϕ(r) and
ψ(Xi) = xi.

Remark 5.3. If R is noetherian and ϕ : R → S is a ring morphism such that S is finitely generated
over R, then S is noetherian.

Proof. By the second definition of “finitely generated,” S ∼= R[X1, . . . , Xn]/ kerψ, and since R is noetherian,
so is R[X1, . . . , Xn], and then so is S (as a quotient ring of the polynomial ring).

The fourth way of constructing rings is the ring of fractions.

Definition 5.4. For a ring R, a subset D ⊂ R is multiplicative if 1 ∈ D, and for any r, s ∈ D, rs ∈ D.

Remark 5.5. For any ring morphism ϕ : R → S, and any multiplicative D ⊂ R, ϕ(D) ⊂ S is multi-
plicative.

Proof. We can see that ϕ(1) = 1 ∈ ϕ(D) and for any r, s ∈ ϕ(D), there is r′, s′ ∈ D such that ϕ(r′) = r and
ϕ(s′) = s, so

rs = ϕ(r′)ϕ(s′) = ϕ(r′s′) ∈ ϕ(D).

To define the ring of fractions, intuitively we want something like R×D, where we are looking at (numerator,
denominator) pairs. But we also want the normal fraction equivalence, so that

r

d
=
ra

da
,

for any r ∈ R, a, d ∈ D. Remember that we intuitively consider two fractions r/a and s/b equivalent if
rb = sa. To account for zero divisors, we actually use the equivalence

(r, a) ∼ (s, b) if c(br − as) = 0 for some c ∈ D.

Lemma 5.6. The ∼ defined above is an equivalence relation.

Proof. The part that is difficult to check is transitivity.

We want to show that if (r, a) ∼ (s, b) and (s, b) ∼ (t, c) then (r, a) ∼ (t, c).
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We know that there is some d, e ∈ D such that

d(br − as) = 0

e(cs− bt) = 0.

We want to consider a linear combination of these that will cancel out the s terms, and we get that

ecd(br − as) + dae(cs− bt) = 0 + 0 = 0

=⇒ ebd(cr − at) = 0,

and since ebd ∈ D, this means that (r, a) ∼ (t, c), as we wanted!

Note that without allowing this c term in our definition of the equivalence, we would not be able to show
transitivity.

Definition 5.7. We denote this set of equivalence classes as D−1R and we write r/a to denote [(r, a)].

Lemma 5.8. D−1R is a ring, with the following operations:

0 = 0/1

1 = 1/1

r/a+ s/b =
rb+ as

ab

r/a · s/b = rs

ab
.

(For the latter two, note that ab ∈ D since D is multiplicative.)

Moreover, there is a homomorphism R → D−1R defined by r 7→ r/1. Note that this is not always an
injective map.

Under this homomorphism, any a ∈ D maps to a/1 and has inverse 1/a, so this homomorphism maps
all of D to units in the ring of fractions.

We will not carry out the full proof - most of the proof is just checking one property after another, and
should be straightforward. The longest thing is checking that + and × are well-defined operations, so we
will check now that + is well-defined.

If r/a = r′/a′ and s/a = s′/a′ in D−1R, then we want to show that br+as
ab = b′r′+a′s′

a′b′ . Using our definition
of equivalences, we know that there is some c, d ∈ D such that

c(a′r − ar′) = 0

d(b′s− bs′) = 0.

We claim that the two sums are equivalent, and specifically that

cd(a′b′br + a′b′as− abb′r′ − aba′s′) = 0.

But this is just
ca′a(d)(b′s− bs′) + db′b(c)(a′r − ar′) = 0 + 0 = 0,

as we wanted. Thus, sums are well defined.

The ring of fractions also has a universal property - we can think of it as the “cheapest way” of adjusting R
so that all elements of D become units.
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Lemma 5.9. If D ⊂ R is multiplicative and ϕ : R→ S is a morphism such that ϕ(D) ⊂ S×, then there
exists a unique ϕ : D−1R→ S such that

R S

D−1R

ϕ

ϕ

commutes.

Proof. We claim that the map is ϕ(r/a) = ϕ(r)(ϕ(a))−1, and leave it as an exercise to check that it is
well-defined and a ring morphism.

To see that it is unique, note that if ψ is another such morphism, then since the diagram commutes, for any
r ∈ R, ψ(r/1) = ϕ(r). But then for any r/a ∈ D−1R, we have that

ψ(r/a)ψ(a/1) = ψ(r/1) = ϕ(r),

and since ψ(a/1) = ϕ(a), we get that
ψ(r/a)ϕ(a) = ϕ(r),

and since ϕ(a) is a unit, we can multiply by (ϕ(a))−1 to get

ψ(r/a) = ϕ(r)(ϕ(a))−1,

so ψ = ϕ.

Again, this completely characterizes the ring of fractions.

Example 5.10.

1. If 0 ∈ D, then D−1R = {0}.

This is because for any r/a, we can see that 0(1 · r − a · 0) = 0, so r/a ∼ 0/1.

2. If D = {r ∈ R | r not a zero divisor} (check that this is multiplicative!) then we denote D−1R as
QR and call it the total quotient ring.

In this case, the map R → QR is injective, because if r/1 ∼ s/1, this means c(r × 1 − s × 1) = 0
for c not a zero divisor, so r − s = 0, so r = s.

• QZ = Q
• If R is an integral domain, then D = R \ {0} and QR is a field.

This is because for any r/a ̸= 0, we know that r ̸= 0, so a/r ∈ QR as well, and we have found
an inverse for r/a, so all nonzero elements are units and QR is a field.

In a sense, this makes QR the smallest field containing R; any field containing R also contains
QR.

• Q(Z× Z) = Q×Q. We leave this as an exercise to prove.

• QC[X]/X2 = C[X]/X2.
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This is because the set of elements which are not zero divisors is

D = {a+ bX | a ̸= 0} ,

and this is already the set of units for this ring. We leave it as an exercise to check these two
facts.

3. For any f ∈ R, the set
{
1, f, f2, . . .

}
is multiplicative. In this case, we denote the ring of fractions

Rf or R[1/f ].

This is isomorphic to R[X]/(fX − 1). Why?

We can do some diagram chasing to prove this.

First, note that the natural map R → R[X]/(fX − 1), which is the inclusion map and then the
projection map, maps f to a unit, since fX = 1 ∈ R[X]/(fX − 1). So we can apply the universal
property of Rf to get that there is a unique ϕ : Rf → R[X]/(fX − 1) such that this diagram
commutes:

We can call this Diagram 1.

Then, if we consider the map R[X]→ Rf defined byX 7→ 1/f , we can see that the first isomorphism
theorem gives us a unique map ψ : R[X]/(fX−1)→ Rf , which is the purple arrow in the following
commutative diagram:

We can call this Diagram 2.

Now, we need to show that ϕ ◦ ψ = idR[X]/(fX−1) and ψ ◦ ϕ = idRf
. To show the latter, we can

see that ψ ◦ ϕ makes the following diagram commute:
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but the universal property of the ring of fractions tells us that idRf
is the unique map Rf → Rf

that makes the diagram commute, so ψ ◦ ϕ = idRf
.

Similarly, to show the former, we see that ϕ ◦ ψ makes the following diagram commute:

but the universal property of the quotient ring tells us that idR[X]/(fX−1) is the unique map
R[X]/(fX − 1)→ R[X]/(fX − 1) that makes this diagram commute, so ϕ ◦ ψ = idR[X]/(fX−1).

But how did we get the latter two commutative diagrams? We can build them up as follows:

Thus, these two are isomorphisms, as we desired.
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Examples of this are:

• Z[1/n]
• R[[X]]X = R((X)) =

{∑∞
i=N aix

i
∣∣ ai ∈ R,N ∈ Z

}
. This is called the Lorent series over R.

We won’t be able to cover completions in class; there will be notes uploaded to Canvas that will be important
for the homework.
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Lecture 6: Fraction Rings, cont’d

Let’s continue looking at examples of fraction rings:

Example 6.1.

4. If we have rings R and S, and multiplicative subsets D ⊂ R and E ⊂ S, then D × E ⊂ R × S is
also multiplicative (this should be easy to check).

Moreover, (D × E)−1(R× S) ∼= D−1R× E−1S, using the isomorphism (r, s)/(d, e) 7→ (r/d, s/e).

You should check that this is well-defined and an isomorphism, but this should be straightforward
to do.

5. If we have a ring morphism ϕ : R → S and a multiplicative subset D ⊂ R, then ϕD ⊂ S is also
multiplicative.

In the case where this map is implicity known, people often write D−1S to denote (ϕD)−1S.

The diagram

R S

D−1R (ϕD)−1S

ϕ

r/d7→ϕ(r)/ϕ(d)

commutes because of the universal property of the

fraction ring.

We can similarly see that for any ring R and multiplicative set D ⊂ R,

(D−1R)[X] ∼= D−1(R[X]),

via the isomorphism
n∑
i=0

(
ri/di

)
Xi 7→

 n∏
i=0

1

di

 n∑
i=0

ri

(∏
j ̸=i di

)
Xi.

However, we don’t have a similar statement for formal power series: we can see that

Z[[X]][1/2] ̸=
(
Z[1/2]

)
[[X]],

as the polynomial 1 + x
2 + x2

4 + · · · is in
(
Z[1/2]

)
[[X]] but not Z[[X]][1/2].

6. If ℘�R is a prime ideal, then R− ℘ is multiplicative.

We call R℘ = (R− ℘)−1R the localization of R at ℘.

Note that this is slightly confusing notation, if f ∈ R such that (f) is prime, then Rf means
(vaguely) that you are inverting f , while R(f) means that you are inverting everything but f .

Let’s look at some examples of this:
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• Z(p), for prime p, is the set
{
a/b ∈ Q

∣∣ a, b ∈ Z, p ∤ b
}

(where we mean a/b ∈ Q which has a representative such that this is true; obviously we can
always express a/b in a form where the denominator is a multiple of p)

• Z(0) = Q

• C[X](X) =
{
p/q ∈ C[X]

∣∣ q(0) ̸= 0
}
, which is the set of all f(X) ∈ C(X) such that we can

evaluate f at 0

• Remember that we said that if ℘� S is prime, then R× ℘�R× S is prime. Then,

(R× S)R×℘ = (R× S −R× ℘)−1(R× S) = (R× (S − ℘))−1(R× S).

Then, applying what we said about fraction rings of the product ring, this equals

R−1R× (S − ℘)−1S = {0} × S℘ = S℘.

Definition 6.2. If I �R and D ⊂ R is multiplicative, then

D−1I =
{
r/a

∣∣ r ∈ I, a ∈ D}
�D−1R.

Definition 6.3. We call I saturated with respect to D if for any r ∈ R and a ∈ D such that ar ∈ I, r
is also an element of I.

Lemma 6.4. If I is saturated with respect to D and r/a ∈ D−1I then r ∈ I.

Note that this is not true in general; we know that in general, if r/a ∈ D−1I then there is some representative
of r/a such that the numerator is in I, but that is not necessarily the case for the given representative r/a.

Proof. We know that there is some representative s/b = r/a with s ∈ I. Since these two are equal, there
exists some c ∈ D such that

c(as− br) = 0 =⇒ cas = cbr.

But we can see that cas ∈ I since s ∈ I and ca ∈ I. This means that cbr ∈ I, and since cbr = (cb)r, with
cb ∈ D and r ∈ R, this means by the definition of saturated that r ∈ I.

Let ϕ : R→ D−1R be the natural map. Then:

Lemma 6.5. If J �D−1R then ϕ−1J is saturated with respect to D and D−1(ϕ−1J) = J .

Proof. To show ϕ−1J is saturated with respect to D, take an arbitrary r ∈ R, a ∈ D such that ar ∈ ϕ−1J .
Applying ϕ, this means that ar/1 ∈ J , and since J is an ideal of D−1R and ainD, (1/a)(ar/1) = r/1 ∈ J .
But this means that r ∈ ϕ−1J , as we desired.

Then, D−1ϕ−1J is the set of all r/a such that a ∈ D and r ∈ ϕ−1J , or r/1 ∈ J . So

D−1ϕ−1J =
{
r/a

∣∣ a ∈ D, r/1 ∈ J} .
We can see that for any r/a ∈ J , a(r/a) = r/1 ∈ J , so r/a ∈ D−1ϕ−1J , and J ⊂ D−1ϕ−1J .

Similarly, for any r/a ∈ D−1ϕ−1J , we know that r/1 ∈ J and 1/a ∈ D−1R, so (1/a)(r/1) = r/a ∈ J , and
D−1ϕ−1J = J .
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Lemma 6.6. If I � R then ϕ−1D−1I is the smallest saturated ideal containing I (formally, all other
saturated ideals containing I also contain ϕ−1D−1I) and D−1ϕ−1D−1I = D−1I.

The proof of this is very similar to the proof of the previous lemma, so if you were confused by the previous
lemma, it is recommended you do this as an exercise.

Lemma 6.7. There is a bijection between ideals of D−1R and ideals I � R which are saturated with
respect to D, using the maps

J 7→ ϕ−1J

D−1I ← [ I.

This follows from the previous two lemmas.

Lemma 6.8. IfD ⊂ R is multiplicative and I�R, thenD, or the image ofD inR/I, is also multiplicative.
There is an isomorphism

D
−1

(R/I) ∼= (D−1R)/(D−1I),

using the map r+I
d+I 7→ r/d+D−1I.

Proof. Intuitively, we can see that this is the sort of thing that we could solve from the universal property.

To get a map D
−1

(R/I) → (D−1R)/(D−1I), we first want a map R/I → (D−1R)/(D−1I) where D maps
to units, and to get this, we want a map R→ (D−1R)/(D−1I) where I is in the kernel.

We get the following commutative diagram:

and we can use this to explicitly compute the homomorphism and get that it is r+I
d+I 7→ r/d+D−1I. Similarly,

in the other direction, we get the commutative diagram:
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and we can use this to explicitly compute the homomorphism and get that it is r/d+D−1I 7→ r+I
d+I .

We can check that the composition of these maps is the identity in both directions, so this is really an
isomorphism.

Corollary 6.9. If R is noetherian, then so is D−1R.

This follows from Lemma 6.7.

Corollary 6.10. A prime ideal I �R is saturated with respect to D if and only if I ∩D = ∅.

There is a bijection between prime ideals of D−1R and prime ideal I of R with I ∩ D = ∅, using the
maps

J 7→ ϕ−1J

D−1I ← [ I.

This directly implies that Spec(D−1R) ⊂ Spec(R).

Note also that Spec(R℘) = {I ∈ SpecR | I ⊂ ℘}.
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Lecture 7: Tensor Products

In lecture 2, we discussed the relative product, which was a subring of R×S with the following commutative
diagram:

Today, we will discuss the tensor product, which in a sense extends the product in the opposite direction;
we get the commutative diagram:

T R

S R⊗T S

U

We will discuss what this means later in the lecture, but for now we are just presenting it as a useful way to
think of the tensor product as compared to the relative product.

So how do we get the tensor product?

Let’s say we have a ring R, and ring morphisms ϕ and ψ to S and T , respectively. We want to construct
S ⊗R T such that the following diagram commutes:

R S

T S ⊗R T

ψ

ϕ

t 7→[Xt]

s7→[Xs]

Well, we can start with the ring R[Xs, Yt]s∈S,t∈T , so that we are trying to “add” all of S and T into the ring
R. But in order to make our operations in our tensor product work the same way they did in R,S, and T ,
we need to mod out by the following ideal:

I =

Xs1+s2 −Xs1 −Xs2 , Yt1+t2 − Yt1 − Yt2 ,
Xs1s2 −Xs1Xs2 , Yt1t2 − Yt1 − Yt2 ,

Xϕ(r) − r, Yψ(r) − r


s1,s2∈S,t1,t2∈T,r∈R

.

That is, we are making sure that for all s1, s2 ∈ S Xs1+s2 = Xs1 + Xs2 and Xs1s2 = Xs1Xs2 , so the X’s
actually correspond to elements of S, and similarly for T . Moreover, we are making sure that for any r ∈ R
r 7→ r in the natural map to the tensor product; this means we are making sure Xϕ(r) = r and Yψ(r) = r.

Definition 7.1. We say that the tensor product of R,S, T given the ring morphisms ϕ : R → S and
ψ : R→ T , is

S ⊗ϕ,R,ψ T = S ⊗R T = R[Xs, Yt]s∈S,t∈T /I,

where I is defined above.
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Note that this depends on our choice of morphism ϕ, ψ but in cases where these morphisms are implicit,
we leave them out of the description of the tensor product.

Definition 7.2. We write s⊗ t ∈ S ⊗R T to denote XsYt ∈ S ⊗R T .

Remark 7.3. For elements of the tensor product, these properties follow from the definition of S⊗R T :

• (s1 + s2)⊗ t = s1 ⊗ t+ s2 ⊗ t

• s⊗ (t1 + t2) = s⊗ t1 + s⊗ t2

• (s1 ⊗ t1)(s2 ⊗ t2) = s1s2 ⊗ t1t2

• for any r ∈ R, we get that

ϕ(r)s⊗ t = Xϕ(r)sYt = Xϕ(r)XsYt = rXsYt = r(s⊗ t).

• for any r ∈ R, s⊗ ψ(r)t = r(s⊗ t)

As we might expect, the tensor product also has a universal property.

Lemma 7.4. If we have the commutative diagram

R S

T U

ψ

ϕ

f

g

then there is a unique map f ⊗ g : S ⊗R T → U that makes the diagram

R S

S ⊗R T

T U

ψ

ϕ

f

g

f⊗g

commute.

Proof. We can see that since this diagram commutes, we are forced to define this map by

f ⊗ g(r) = f(ϕ(r)) = g(ψ(r))

f ⊗ g(Xs) = f(s)

f ⊗ g(Yt) = g(t).

Clearly, this gives us a ring morphism R[Xs, Yt]s∈S,t∈T → U , so we need to show that the I we defined above
is within the kernel of this map, so we can apply the universal property of the quotient map to see that this
gives us a unique homomorphism R[Xs, Yt]s∈S,t∈T /I → U , as we desired.

We can see that for any s1, s2 ∈ S,

f ⊗ g(Xs1+s2 −Xs1 −Xs2) = f(s1 + s2)− f(s1)− f(s2) = 0

f ⊗ g(Xs1s2 −Xs1Xs2) = f(s1s2)− f(s1)f(s2) = 0,
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and for any r ∈ R,
f ⊗ g(Xϕ(r) − r) = f(ϕ(r))− f(ϕ(r)) = 0,

and we can similarly check these properties of the Y terms to see that the entire ideal I is in the kernel of
this map, as we desired.

Thus, the f ⊗ g we defined above is the unique homomorphism from S ⊗R T to U that makes this diagram
commute, as we desired.

Note that the universal property of the tensor product also gives us the uniqueness of the tensor product,
in the sense that

Remark 7.5. If we have two tensor products S ⊗R T and S ⊗′R T with the same universal property,
then S ⊗R T ∼= S ⊗′R T , and there is a canonical isomorphism between the two.

Proof. The universal property of S ⊗R T gives us the following unique ϕ:

R T

S S ⊗R T

S ⊗′R T

ϕ

and the universal property of S ⊗′R T gives us the following unique ϕ′:

R T

S S ⊗R T

S ⊗′R T

ϕ′

We claim that ϕ and ϕ′ are inverses of each other. Why?
We will just show that ϕ′ ◦ ϕ = idS⊗RT , as the other direction is identical. To do so, we combine the two
commutative diagrams in the following way:

R T

S S ⊗R T

S ⊗′R T

S ⊗R T

ϕ

ϕ′

But then, by applying the universal property of S⊗RT to the green arrows, we get that idS⊗RT is the unique
map S ⊗R T → S ⊗R T that makes the diagram commute, so ϕ′ ◦ ϕ = idS⊗RT .
We can do the same thing in the other direction to get that these two maps are inverses of each other and
therefore isomorphisms. Moreover, ϕ and ϕ′ are the canonical isomorphisms in either direction, because they
are the unique maps induced by the universal property.
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Lemma 7.6. If we have the commutative diagrams

S S′

R

α T T ′

R

β

then there is a unique map α⊗ β : S ⊗R T → S′ ⊗R T ′ defined by

α⊗ β(s⊗ t) = α(s)⊗ β(t).

Proof. We can apply the universal property of the tensor product to the following commutative diagram:

R T T ′

S S ⊗R T

S′ S′ ⊗R T ′
α

β

α⊗β

and then by following the diagram, we can check that

α⊗ β(s⊗ t) = α⊗ β(Xs)α⊗ β(Yt) = Xα(s)Yβ(t) = α(s)⊗ β(t).

Definition 7.7. We say that an element in S ⊗R T is a pure tensor if we can express it in the form
s⊗ t.

Remark 7.8. Every element of S ⊗R T is a finite sum of pure tensors.

Proof. We can see that any monomial of R[Xs, Yt]s∈S,t∈T is of the form

r

n∏
i=1

Xmi
si

n′∏
j=1

Y
m′

j

tj ,

for some r ∈ R and some si ∈ S, ti ∈ T . But in our quotient ring, we know that this is equivalent toϕ(r) n∏
i=1

smi
i

⊗
 n′∏
j=1

t
m′

j

j

 ,

which is a pure tensor. Since every element of this polynomial ring is a finite sum of monomials, every
element of our quotient must be a finite sum of pure tensors.

Lemma 7.9. The tensor product R⊗R T is isomorphic to T , using the map r ⊗ t 7→ ψ(r)t.

Proof. Since we know R⊗RT is the unique ring with the tensor product universal property, it suffices to show
the universal property also holds for T . But we know that for any U, f, g such that we have the following
commutative diagram:

R R

T U

ψ

idR

g

f
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then g is the unique map T → U that will make the diagram

R R

T

T U

ψ

idR

g

f

idT

ψ

g

commute. Thus, the universal property holds for T , and R⊗R T ∼= T .
We leave the proof of the definition of the isomorphism as an exercise; this just follows from the fact that it
is the unique isomorphism defined in Remark 7.5.

Lemma 7.10. For any rings R,S, T , S ⊗R T ∼= T ⊗R S, and the isomorphism between them is the map
s⊗ t 7→ t⊗ s.

Proof. It is clear from the universal property that these are isomorphic (using the same argument as in
Remark 7.5). The universal property moreover tells us that the unique isomorphism between them is the α
that makes this diagram commute:

R S

T S ⊗R T

T ⊗R S

s7→s⊗1
s7→1⊗s

α

Then, we can see that in order for this diagram to commute, we must have

α(s⊗ t) = α(s⊗ 1)α(1⊗ t) = (1⊗ s)(t⊗ 1) = t⊗ s.

Note 7.11. Importantly, this means that all theorems in this section that we prove in terms of T (or
the second ring in the tensor product) are also true for S (or the first ring in the tensor product). For
much of this lecture, we will only state lemmas in one direction, so it is important to note they apply in
both directions.

Lemma 7.12. If I � S is an ideal, then we define I ⊗R T to be the set of finite sums of pure tensors
s⊗ t such that s ∈ I. Then, I ⊗R T � S ⊗R T and

(S ⊗R T )/(I ⊗R T ) ∼= (S/I)⊗R T,

using the isomorphism s⊗ t+ I ⊗R T 7→ (s+ I)⊗ t.

Proof. Consider the map S ⊗R T → S/I ⊗R T defined by s⊗ t 7→ (s+ I)⊗ t. We can see that any element
in I ⊗R T would map to 0⊗ t = 0(1⊗ t) = 0X1Xt = 0, so I ⊗R T is in the kernel of this map, and we can
apply the universal property of quotient rings to get an induced map ϕ to make this diagram commute,

S ⊗R T S/I ⊗R T

S ⊗R T/I ⊗R T

s⊗t7→(s+I)⊗t

ϕ
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and we can see that ϕ(s⊗ t+ I ⊗R T ) = (s+ I)⊗ t, as we desired.
Then, in the reverse direction, we get the commutative diagram

R S/I S

T S/I ⊗R T S ⊗R T

S ⊗R T/I ⊗R T

ψ

where the green arrow comes from applying Lemma 7.6 to the inclusion map S/I → S and the identity map
T → T , and our desired map ψ is just the composition of the green and blue maps.
We leave it as an exercise to check that these are inverses of each other.

Lemma 7.13. If I �R, then R/I ⊗R T ∼= T/ψI.

Proof. We know from the previous lemma that R/I⊗RT ∼= R⊗RT/I⊗RT , and then we can apply Lemma 7.9
to see that this is isomorphic to T/ψI.

Lemma 7.14. If D ⊂ S is multiplicative, then D ⊗R 1 = {d⊗ 1 | d ∈ D} is also multiplicative, and

(D−1S)⊗R T ∼= (D ⊗R 1)−1(S ⊗R T ).

Lemma 7.15. For any multiplicative D ⊂ R, D−1R⊗RT ∼= D−1T , using the map r/d⊗t 7→ ψ(r)t/ψ(d).

Lemma 7.16. The tensor product S ⊗R T [X] is isomorphic to (S ⊗R T )[X].

Lemma 7.17. For any ring U , S⊗R (T ⊗RU) ∼= (S⊗R T )⊗RU , using the map s⊗ (t⊗u) 7→ (s⊗ t)⊗u.

Lemma 7.18. For any ring U , S ⊗R (T × U) ∼= (S ⊗R T )× (S ⊗R U).
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Lecture 8: Factorization in Rings

This week, we will cover factorization in rings, which will finish up our unit on rings.

Definition 8.1. If R is a ring and r, s ∈ R, then r | s (we say “r divides s”) if s = rt for some t ∈ R.

Definition 8.2. We call r irreducible in R if r /∈ R× and if r = st ∈ R, then either s ∈ R× or t ∈ R×.

Example 8.3. In Z, the irreducibles are ±p for prime p.

If K is a field then the irreducibles in K[X] are the irreducible polynomials.

Lemma 8.4. If R is a noetherian integral domain then for any r ∈ R such that r ̸= 0, we can write

r = u · π1 · · ·πn,

where u ∈ R× and each πi is irreducible.

Proof. Let X be the set of all ideals (r) ⊂ R where r has no such factorization.

If this is an empty set, then we are done.

If not, then since R is noetherian, X has some maximal element (r). We know that (r) is not irreducible,
since then it would have a trivial factorization, so there must be some s, t /∈ R× such that r = st.

Then, (r) ⊆ (s), but if (r) = (s) then s = ur for some u ∈ R. But since we are in an integral domain, this
implies u = t−1, which contradicts the fact that t is not a unit. Thus, we have (r) ⊊ (s) and similarly we
get that (r) ⊊ (t).

Since (r) is maximal in X , this means that (s) and (t) cannot be in X , so we have factorizations s = uπ1 · · ·πn
and t = vπ′1 · · ·π′m. But then,

r = st = uvπ1 · · ·πnπ′1 · · ·π′m,

and we have found a factorization for r, contradicting the fact that r has no such factorization.

Thus, for every r ∈ R, we can find such a factorization.

Definition 8.5. We say that r, s ∈ R are associates if r = su, where u ∈ R×, and we denote this r ∼ s.

Example 8.6. In Z, for any prime p, p ∼ −p.

Example 8.7. The ring Z has the property that if

r = uπ1 · · ·πn = vπ′1 · · ·π′m ∈ Z,

with u, v ∈ Z× and πi, π
′
i irreducible, then m = n, and up to rearrangement πi ∼ π′i.

But not all rings have this property, and even some otherwise very nice rings do not.
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Example 8.8. In Z[
√
−5] we can write

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

We claim that all of these are irreducibles and moreover that none of them are associates.

We will just show that 2 is irreducible as an example. For any factorization 2 = (a+b
√
−5)(c+d

√
−5) ∈

Z[
√
−5], we can take the norm to get that

4 = (a2 + 5b2)(c2 + 5d2).

But since a, b, c, d are integers, clearly b = d = 0, and then ac = ±2. But this implies that one of the
factors is ±1, which means one of these factors is a unit, and therefore 2 is irreducible.

We leave showing that the rest of these factors are irreducibles as an exercise; after that, it is clear that
they are not associates since neither 1 +

√
−5 or 1−

√
−5 can be a multiple of 2.

Definition 8.9. A ring R is a unique factorization domain (or UFD) if it is an integral domain and

1. for any r ∈ R \ {0}, we can factor r as

r = uπ1 · · ·πn,

where u ∈ R× and each πi is an irreducible.

2. if
uπ1 · · ·πn = vπ′1 · · ·π′m,

where u and v are units and each πi and π
′
j is an irreducible, then n = m and up to rearrangement,

πi ∼ π′i for each i.

Example 8.10.

1. Z is a UFD

2. any field is a UFD (since all nonzero elements are units)

3. Z[
√
−5] is not a UFD

Lemma 8.11. If R is an integral domain and (1) holds in the definition of a UFD, then the following
are equivalent:

1. a principal ideal (r) is prime if and only if r is irreducible

2. if π ∈ R is irreducible then (π) is prime

3. if π ∈ R is irreducible then for any r, s ∈ R such that π | rs, either π | r or π | s

4. R is a UFD

Proof. Clearly, (2) and (3) are equivalent, and (1) implies (2). So to complete the equivalences we just need
to show that (3) implies (4) and (4) implies (1).

We will first show that (3) =⇒ (4).
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We start with an arbitrary uπ1 · · ·πn = vπ′1 · · ·π′m, where u, v ∈ R× and each πi and π
′
j is irreducible. We

will show via induction on m that these are the same factorization.

As a base case, we can see that if m = 0, then uπ1 · · ·πn is a unit. But any factor of a unit is also a unit
(and therefore not an irreducible) so n = 0, and we are done.

For the inductive step, when m > 0, we can see that (3) implies that since π′m is not a factor of u, we must
have π′m | πi for some i, so there exists some w ∈ R such that πi = wπ′m. Since πi is irreducible, this means
w must be a unit, and π′m and πi must be associates. We rearrange so that i = m and we get π′m ∼ πn, and
since this is an integral domain, we can then factor out the πi to get

(uw)π1 · · ·πn−1 = vπ′1 · · ·π′m−1.

Applying our inductive assumption, we get that n− 1 = m− 1 (so n = m) and for each i, πi ∼ π′i, so this is
a UFD.

Now we will show that (4) =⇒ (1).

In one direction, we consider a prime principal ideal (r). For any s, t ∈ R such that r = st, we have that
st ∈ (r), so either s ∈ (r) or t ∈ (r). We assume without loss of generality that s ∈ (r), so that s = ur for
some u ∈ R. But since this is an integral domain we can combine these equations to get that ut = 1, and
then t ∈ R×, so r is irreducible.

For the other direction, we consider an irreducible r ∈ R. For any st ∈ (r), we have that st = rx for some
x ∈ R. We can write out the factorizations

s = uπ1 · · ·πn
t = vπ′1 · · ·π′m
u = wπ′′1 · · ·π′′p ,

so that
(uv)π1 · · ·πnπ′1 · · ·π′m = wπ′′1 · · ·π′′pr,

where r and all of the π’s are irreducible and u, v, w ∈ R×. But then, since we are in a UFD, we know that
there exists some i such that r ∼ πi (and then r | s so s ∈ (r)) or r ∼ π′i (and then r | t so t ∈ (r)). Thus,
this ideal is prime.

Definition 8.12. We call R a principal ideal domain (or PID) if it is an integral domain and any
ideal of R is principal.

Example 8.13. Z is a PID, and when K is a field, K[X] is a PID.

Lemma 8.14. If R is noetherian then the following are equivalent

1. R is a PID

2. R is a UFD where each nonzero prime ideal is maximal

(Note that R being a PID implies that R is noetherian, so we can also say that if R is a general ring, then
(1) is equivalent to (2) plus the property that R is noetherian.)

Proof. The direction (2) =⇒ (1) is a homework problem.
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For the other direction, we will assume R is a PID and prove property (2) in Lemma 8.11.

Suppose π ∈ R is an irreducible. Consider any rs ∈ (π). Since this is a PID, (r, π) = (t) for some t ∈ R.
But then π = tu for some u ∈ R, and since π is irreducible this means either t ∈ R× or u ∈ R×.

If u ∈ R×, then t ∼ π so (t) = (π) and r ∈ (π).

If t ∈ R×, then (t) = (r, π) = R, so there exists some x, y ∈ R such that rx+ πy = 1. But then, multiplying
by s, we get that

srx+ sπy = s,

or s = (rs)x+ (π)sy, so s is a multiple of π and s ∈ (π).

Then, we will show that every nonzero prime ideal is maximal. If we have a prime ideal ℘ ̸= (0), and any
ideal q ̸= R such that ℘ ⊆ q, we can see that q must also be prime.

This means we have ℘ = (π) and q = (π′) with π, π′ being irreducible. If (π) ⊆ (π′) then there exists some
u ∈ R such that π = uπ′. But since π is irreducible, this implies that π ∼ π′, and therefore ℘ = q, so ℘ is
maximal, as we desired.

Example 8.15. When K is a field, K[X] is a UFD.

We now move on to some things we can do within a UFD.

Lemma 8.16. Suppose R is a UFD, and r, s ∈ R. Then, there exists a gcd(r, s) ∈ R, which is unique
up to associates, such that gcd(r, s) | r, gcd(r, s) | s, and for any t ∈ R such that t | r and t | s, we also
have t | gcd(r, s).

Proof. Let’s say that r = uπ1 · · ·πn and s = vπ′1 · · ·π′m. We can rearrange these irreducibles so that for any
1 ≤ i ≤ p, πi ∼ π′i, and for any i, j > p, πi ̸∼ π′j .
Then, we define gcd(r, s) = π1 · · ·πp.
We leave it as an exercise to check that the stated properties hold.

Definition 8.17. If R is a UFD, then r, s ∈ R are coprime if gcd(r, s) = 1.

Definition 8.18. We can define gcd(r1, . . . , rn) similarly to the way we defined the gcd of two elements.

Definition 8.19. If R is a UFD then a polynomial f(X) ∈ R[X] is primitive if the gcd of its coefficients
is 1.
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Lecture 9: Factorization in Rings, II

Lemma 9.1 (Gauss). If R is a UFD and f, g ∈ R[X] are primitive, then fg is also primitive.

Proof. We will prove the contrapositive. If fg were not primitive, then there is some irreducible π ∈ R such
that π divides all coefficients of fg. Since R is a UFD, (π) must be a prime ideal of R, and then since R/(π)
is an integral domain, R/(π)[X] = R[X]/(π) is also an integral domian.
Let f be the image of f in R[X]/(π) and let g be the image of g in R[X]/(π). We know that

fg = fg = 0 ∈ R[X]/(π),

and since R[X]/(π) is an integral domain, this means either f or g is 0 in this quotient, which means either
π divides all the coefficients of f or π divides all the coefficients of g.
Thus, if fg is not primitive, then f and g cannot both be primitive.

Lemma 9.2. If R is a UFD, then f(X) ∈ R[X] is irreducible if and only if either:

• f ∈ R and f is irreducible in R

• f is primitive and f(X) is irreducible in QR[X] (the polynomial ring of the field of fractions of R)

Proof. For the first direction:

If f(X) is irreducible and f ∈ R, then we can see that if f = gh ∈ R, then either g is a unit in R[X] or h
is a unit in R[X]. But we have that the units in R[X] must have degree 0 (since the degree adds when we
multiply polynomials), so the units in R[X] are exactly the elements in R which have inverses in R, and we
get that

R[X]× = R×.

Thus, since either g or h is a unit in R[X], that polynomial will also be a unit in R, and therefore f is
irreducible in R.

If f(X) is irreducible and f ̸∈ R, then we can see that f must be primitive, because otherwise there is some
irreducible π such that π divides all coefficients of f , and therefore f/π ∈ R[X]. Then

f = π(f/π),

and π is not a unit in R[X] because it is not a unit in R, and f/π is not a unit in R[X] because it has
nonzero degree.

Thus, f is primitive. From here, let’s say f = gh ∈ QR[X]. Then let a ∈ QR be the lcm of the denominators
of coefficients of g divided by the gcd of the numerators of coefficients of g, so that g = a · g̃, where g̃ ∈ R[X]
and is a primitive polynomial. We can similarly write h = b · h̃, where b ∈ QR and h̃ is a primitive polynomial
in R[X]. Then, we have that

f = abg̃h̃.

Since R is a UFD, we can write ab as a fraction in R in “lowest terms,” where we mean that the numerator
and the denominator are coprime. Then, for abg̃h̃ to be an element of R[X], we need the denominator of ab in
lowest terms to divide the gcd of the coefficients of g̃h̃. But Gauss’s lemma tells us that g̃h̃ is also primitive,
so the denominator of ab must be a unit, and ab ∈ R. Then this becomes a factorization of f in R[X], so we
know that either g̃ or h̃ is a unit in R[X], which means g or h is a unit inQR[X], and f is irreducible inQR[X].
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For the other direction:

If f ∈ R and f is irreducible in R, then for any factorization f = gh ∈ R[X], we know that since
deg f = deg g + deg h, the polynomials g and h must also be in R. Thus, either g or h is a unit in R,
which means it is also a unit in R[X], so f is irreducible in R[X].

If f ∈ R[X] \R and f is primitive and irreducible in QR[X] then for any

f = gh ∈ R[X],

we know that either g or h is a unit in QR[X]. We assume without loss of generality that g is the unit, and
then by the same logic as before this means that g is a unit in QR. But g is also an element of R[X], which
means g ∈ R. Since f is primitive, this implies g is a unit in R, so it is a unit in R[X], and f is irreducible
in R[X].

Theorem 9.3. If R is a UFD then R[X] is a UFD.

Example 9.4. This tells us that Z[X,Y ] and C[X,Y ] are UFDs.

Proof. We first prove the existence of a factorization into irreducibles:

We know that for any f(X) ∈ R[X], we can factor it in QR[X] (since we showed in Example 8.15 that
QR[X] is a UFD). Let’s say we have a factorization

f(X) = u · π1 · · ·πn,

where u ∈ QR[X]× = QR× and each πi is an irreducible in QR[X]. Note that we can multiply πi by
the lcm of the denominators of its coefficients and divide u by this lcm to get the same product, but with
each πi being an element of R[X] and then divide πi by the gcd of its coefficients and multiply u by this
gcd to get the same product, but with each πi being primitive. But then each πi is a primitive polynomial
in R[X] which is irreducible in QR[X], and Lemma 9.2 tells us that this means each πi is irreducible in R[X].

Moreover, we know that since R is a UFD we can write u in “lowest terms,” and then the denominator
must divide the gcd of the coefficients of π1 · · ·πn for the total product f to be in R[X]. But since each πi
is primitive, Gauss’s Lemma tells us this product is primitive, so the denominator of u must be a unit, and
therefore u ∈ R.

From here, we can just factor u as an element of R to get a factorization of f into irreducibles (this uses the
fact that irreducibles in R are irreducibles in R[X], which we just proved in Lemma 9.2).

Now that we have some factorization, we will prove the uniqueness of this factorization:

We showed in Lemma 8.11 that once such a factorization exists, proving uniqueness is equivalent to showing
that for any irreducible π ∈ R[X], (π) is prime. We divide this into two cases:

If π ∈ R, then we know that R/(π) is an integral domain since R is a UFD. This implies R/(π)[X] is an
integral domain, and this equals R[X]/(π), so (π)�R[X] is prime.

If π ̸∈ R then we know that π is primitive and (π) �QR[X] is prime. Then, for any f, g ∈ R[X] such that
fg ∈ (π), we know that either f ∈ (π)�QR[X] or g ∈ (π)�QR[X]. Assume without loss of generality that
f is the multiple of π. Then, we know that there is some h ∈ QR[X] such that f = π · h. Then, as before,
we write h = a · h̃ where a ∈ QR and h̃ is primitive, and we note that

f = aπ · h̃.
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But then π · h̃ is primitive by Gauss’s lemma, so for f to be an element of R[X] we need a ∈ R, which means
ah̃ ∈ R[X] and f ∈ (π)�R[X], as we desired.

Let’s look at a few examples of polynomials, to find tricks to help us determine whether a polynomial is
irreducible.

Example 9.5. Is X3 − 3X + 1 irreducible in Q[X]?

Note that this is primitive, so this is the same as asking about irreducibility in Z[X]. Note that since
this is a monic cubic, if it had non unit factors in Z[X], they would be of the form

(X2 + aX + b)(X + c) a, b, c ∈ Z.

Specifically we can see that b, c are integers such that bc = 1, so c = ±1, and this has non-unit factors
only if ±1 is a root of X3 − 3X +1. But we can see that 13 − 3(1) + 1 = −1 and (−1)3 − 3(−1) + 1 = 3,
so neither of these are roots, and our polynomial is irreducible.

The trick we used above was that when we look at factors of the polynomial in Z[X], there are very few
options for what the coefficients could be.

Example 9.6. Is X3 +X + 105 irreducible in Q[X]?

Again, this is the same as asking if it is irreducible in Z[X]. We could do the same thing as above, but
there are lots of options for bc = 105, so this would be a lot of casework.

Instead, note that if this polynomial had non-unit factors in Z[X], then it will also have non-unit factors
in (Z/2Z)[X]. We write

(X2 + aX + b)(X + c) = X3 +X + 1 ∈ (Z/2Z)[X],

and note that c can be either 0 or 1, meaning that either 0 or 1 would be a root of this polynomial. But
we can see that 03 + 0 + 1 = 13 + 1 + 1 = 1 ∈ Z/2Z, so this has no non-unit factors in (Z/2Z)[X] and
therefore it is also irreducible in Q[X].

In general, it is useful to look at our polynomial in some Z/(m)[X], as long as m and the leading coefficient
of our polynomial are coprime.

Lemma 9.7 (Eisenstein’s Criterion). Suppose R is an integral domain and ℘ is a prime ideal of R. Let

f(X) = f0 + f1X + · · ·+ fdX
d ∈ R[X].

Suppose moreover that fd ̸∈ ℘, fi ∈ ℘ for each i < d and f0 /∈ ℘2. Then, f is not the product of any two
lower-degree polynomials.

Example 9.8. Consider 2X + 6 ∈ Z[X].

Taking ℘ = (3), Eisenstein’s criterion tells us this is not the product of any two lower-degree polynomails,
but it is not irreducible because

2(X + 3) = 2X + 6.

So Eisenstein’s criterion “almost” shows irreducibility; in a UFD we need to additionally check that our
polynomial is primitive.

Proof. Suppose f = gh, where

g(X) = g0 + · · ·+ geX
e

h(X) = h0 + · · ·+ hd−eX
d−e
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and e, d− e > 0. We can see that fd = gehd−e ̸∈ ℘, so ge, hde /∈ ℘.

Then, pick the minimal i, j such that gi and hj are not in ℘. We have that

fi+j = g0hi+j + · · ·+ gi−1hj+1︸ ︷︷ ︸
∈℘

+gihj + gi+1hi−1 + · · ·+ gi+jh0︸ ︷︷ ︸
∈℘

.

But since ℘ is prime and gi, hj /∈ ℘, we have that gihj /∈ ℘, which means that this sum cannot be in ℘. But
this means that fi+j = fd and i = e, j = d− e.

Since those were the minimal i, j such that gi, hj /∈ ℘, we can see that g0, h0 ∈ ℘, so f0 = g0h0 ∈ ℘2, a
contradiction.

Example 9.9. The polynomial X4 + 10X + 5 is irreducible in Z[X].

Corollary 9.10. For a prime p, the pth cylotomic polynomial

ϕp =
Xp − 1

X − 1
= Xp−1 +Xp−2 + · · ·+ 1 ∈ Z[X]

is irreducible.

Proof. Note that ϕp(X) is irreducible if and only if ϕp(X + 1) is irreducible. But

ϕp(X + 1) =
(X + 1)p − 1

X
= Xp−1 + pXp−2 + · · ·+

(
p

i

)
Xp−i−1 + · · ·+ p.

Applying Eisenstein’s criterion with ℘ = (p), we can see that this has no factorization into lower-degree
polynomials, and since this is primitive, it must be irreducible.
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Lecture 10: Category Theory, I

A good reference for this part of the course is Categories for the Working Mathematician by Saunders Mac
Lane.

Definition 10.1. We have a universe U with small sets X ∈ U such that

• If X ∈ Y ∈ U then X ∈ U .

• If X,Y ∈ U then {X,Y } ∈ U

• If X ∈ U then P (X) ∈ U , where P (X) denotes the power set of X.

• {0, 1, 2, 3, . . .} ∈ U

• If we have X ∈ U and a function f : X → U then im f ∈ U .

Note that the elements of U are a model of ZFC, but the axioms of ZFC do not guarantee the existence of
such a U ; we are just assuming this exists for the sake of our course.

Definition 10.2. By a category C we mean two sets ob(C) ⊂ U (of objects) and mor(C) (of mor-
phisms) together with functions:

• dom : mor(C)→ ob(C) which maps a morphism to its domain

• cod : mor(C)→ ob(C) which maps a morphism to its codomain

• id : ob(C)→ mor(C) which maps an object to its identity morphism

• ◦ :
{
(f, g) ∈ mor(C)×mor(C)

∣∣ cod(g) = dom(f)
}
→ mor(C) which maps two functions to their

composition

such that

1. for X ∈ ob(C), dom idX = X = cod idX

2. for f ∈
{
f ∈ mor(C)

∣∣ dom(f) = X, cod(f) = Y
}
= HomC(X,Y ), which is denoted X Y

f

or f : X → Y , we have that
f ◦ idX = idY ◦f,

3. for f, g, h ∈ mor(C), f ◦ (g ◦ h) = (f ◦ g) ◦ h

Definition 10.3. We call f : X → Y an isomorphism if there exists some g : Y → X with the
property that f ◦ g = idY and g ◦ f = idX .

Remark 10.4. If such a g exists, it is unique, and we call it the inverse of f , denoted f−1.

Proof. If we have g, g′ with this property, then

g ◦ f ◦ g′ = g ◦ idY = g

but
g ◦ f ◦ g′ = idX ◦g′ = g′,

so the two morphisms are the same.
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Definition 10.5. A morphism f : X → Y is an epimorphism (or epi) if whenever we have maps

X Y Z
f g

h

such that g ◦ f = h ◦ f , g = h. (We can think of this as similar to surjectivity.)

A morphism f : X → Y is a monomorphism (or mono) if whenever we have maps

Z X Y
fg

h

such that f ◦ g = f ◦ h, g = h. (We can think of this as similar to injectivity).

Example 10.6. Some examples of categories are:

1. Sets: the objects are small sets, and morphisms are functions from one small set to another.

Here, the identity, domain, codomain, and composition functions should be clear.

We can see that if f : X → Y is surjective, then whenever g : Y → Z and h : Y → Z have the
property that g ◦ f = h ◦ f , then for every y ∈ Y , there exists some x ∈ X such that f(x) = y and
then g(y) = g(f(x)) = h(f(x)) = h(y), so g = h, and this is an epimorphism. However, if f is not
surjective, then there is some y ∈ Y that is not in the image of f , and then we can construct g and
h such that g ◦ f = h ◦ f but g(y) ̸= h(y). Thus the epimorphisms in this category are exactly the
surjective maps.

Similarly, we can see that the monomorphisms in this category are the injective maps.

2. Groups: the objects are small groups and the morphisms are group homomorphisms. As before,
the epimorphisms are all surjective homomorphisms and the monomorphisms are all injective ho-
momorphisms.

3. Rings: the objects are small rings and the morphisms are ring homomorphisms. Again, the epimor-
phisms are all surjective homomorphisms and the monomorphisms are all injective homomorphisms.

4. Top: the objects are small topological spaces and the morphisms are continuous functions. Again,
the monomorphisms are the injective functions, but we can have epimorphisms which are not
surjective: the inclusion map

Q ↪→ R

is not surjective, but it is an epimorphism (we know that if the image of g and h agree on all the
rationals, then they have to agree on all the reals because they are continuous functions and the
rationals are dense in the reals).

5. K-Vect: the objects are small K-vector spaces and the morphisms are K-linear maps.

6. Ab: the objects are abelian groups, and the morphisms are group homomorphisms.

Definition 10.7. A covariant functor F : C → D is a function:

F : ob(C) −→ ob(D)
F :mor(C) −→ mor(D)
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that preserves the category structure, in the sense that

F (dom f) = domF (f)

F (cod f) = codF (f)

F (idX) = idF (X)

F (f ◦ g) = F (f) ◦ F (g).

Intuitively, we can think of F as something that “preserves arrows” in the sense that for any

X Y
f

we get

FX FY
Ff

In contrast, a contravaraint functor F : C → D reverses arrows, in the intuitive sense that for any

X Y
f

we get

FX FY
Ff

Precisely, a contravariant functor F fulfills the properties that:

F (dom f) = codF (f)

F (dom f) = codF (f)

F (idX) = idF (X)

F (f ◦ g) = F (g) ◦ F (f).

Example 10.8. Some examples of functors are

1. The forgetful functors
K-Vect −→ Ab −→ Group −→ Sets,

in which we just “forget” some of the group structure in each map. This is a covariant functor.

2. The functor Hi : Top→ Ab defined by X 7→ Hi(X,Z) which maps i to its ith singular cohomology.
This is a contravariant functor.

As a warning, π1 would map topological spaces with a point identified to its corresponing funda-
mental group; it is not a functor Top → Group because the fundamental group of a topological
space depends on your starting point.

3. GLn : Rings→ Groups where R 7→ GLn(R), or the group of n× n invertible matrices over R, is a
covariant functor.

4. idC : C → C is a covariant functor.

5. The dual map ∗i : K-Vect → K-Vect defined by V 7→ V ∗, where we are mapping vector spaces to
their dual, is a contravariant functor.

Definition 10.9. If F : C → D is a functor, then we call F faithful if F : HomC(X,Y )→ HomD(FX,FY )
(or F : HomC(X,Y )→ HomD(FY, FX) if F is contravariant) is injective.
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Similarly F is full if these maps are surjective.

Example 10.10. Looking at the examples above, we have that:

1. The forgetful functors are faithful but not full (because all group homomorphisms have correspond-
ing set morphisms, but not all set morphisms have a preimage which preserves group structure).

4. The identity functor is fully faithful.

5. The dual functor is faithful; we know that if we have

V W
g

f

then the image is

V ∗ W ∗
g∗

f∗

where f∗ is defined by λ 7→ λ◦f . But then we have that if f∗ = g∗, then for all λ, λ◦f = λ◦g, and
if there exists some v such that f(v) ̸= g(v) then we can define a λ such that λ(f(v)) ̸= λ(g(v)),
which is a contradiction. Thus, we must have f = g, and this is injective.

However, this is functor is not full because our functor is not always surjective in the case of infinite
dimensional vector spaces; if we restricted this to finite dimensional vector spaces then this functor
would be fully faithful.

Definition 10.11. A category C is a subcategory of D if ob(C) ⊂ ob(D), mor(C) ⊂ mor(D), and
dom, cod, id, and ◦ are defined the same way in C and D.

As we might expect, we can compose functors, so that if we have

C D E
F G

then G ◦ F : C → E is also a functor.

Everything we’ve discussed above is probably somewhat familiar from defining things like groups and rings,
but the following is unique to category theory:

Definition 10.12. If F,G : C → D are functors then a natural transformation ϕ : F → G is a
morphism ϕX : FX → GX for each X ∈ ob(C) such that, for any other morphism f : X → Y ∈ mor(C),
the diagram

FX FY

GX GY

ϕYϕX

Ff

Gf

commutes.

Example 10.13. The determinant map det : GLn → GL1 is a natural transformation because for any
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ring homomorphism R→ S, we have that

GLn(R) GL1(R)

GLn(S) GL1(S)

det

det

f f

commutes (where the f in the diagram actually corresponds to GLn f or GL1 f , respectively, and means
applying f to each entry of our matrix) because the determinant is a sort of “universal polynomial” on
the elements of our matrix, so it will commute with any ring homomorphism.

We will look at more examples of natural transformations tomorrow, because it usually takes a while to wrap
your head around.

49



Math 210a Aditi Talati Fall 2022

Lecture 11: Category Theory, II

For ease of understanding, in my notes for this lecture, I will use calligraphy letters (C,D) to denote categories,
capital letters (F and G) to denote functors between categories, and bold letters (ϕ,ψ) to denote natural
transformations.

Example 11.1. An important functor we forgot to mention last lecture is the constant functor Cy,
for some object y ∈ D, where for any category C, we get the functor

Cy : C −→ D
x 7→ y

f 7→ idy

for any x ∈ ob(C) and f ∈ mor(C).

Now, let’s continue our examples of natural transformations from last time:

Example 11.2.

2. We have the two functors id : K-Vect→ K-Vect and ∗ ◦ ∗ : K-Vect→ K-Vect. What is the natural
transformation between them?

(Note that we use the double dual instead of the dual because in order to have a natural transfor-
mation, we need both of our functors to be covariant or both of them to be contravariant.)

We want a natural transformation D : id → ∗ ◦ ∗ such that for every V,W ∈ ob(K-Vect), and
f : V →W ∈ mor(K-Vect), we have a ϕV : V → V ∗∗ and ϕW :W →W ∗∗ such that the diagram:

V W

V ∗∗ W ∗∗

DV DW

f

f∗∗

commutes. Remember that any w ∈W ∗∗ is a function of λ ∈W ∗. We can see that in order to get
this map to commute, we want DW (w)(λ) = λ(w), for all λ ∈W ∗.

Then, doing a bit of algebra, we can check that we do actually get that for all v ∈ V and for all
λ ∈W ∗,

f∗∗(DV (v))(λ) = DW (f(v))(λ),

so this diagram commutes, as we desired.

3. For any functor F : C → D, there is the identity transformation id : F → F where for any X ∈ C,
idX : FX → FX is the identity map.

4. For any f : Y → Y ′ ∈ mor(D), Cf : CY → CY ′ is a natural transformation.

Specifically, we have that for any X ∈ C, Cf,X = f , because then for any g : X → X ′ ∈ mor(C),

50



Math 210a Aditi Talati Fall 2022

this diagram:

CYX CYX
′

CY ′X CY ′X ′

Cf,X Cf,X′

CY g

CY ′g

becomes this:
Y Y

Y ′ Y ′

f f

idY

idY ′

which clearly commutes.

We can also compose natural transformations, in the way we would expect: if we have the chain

F G Hϕ ψ

then ψ ◦ ϕ : F → H is also a natural transformation.

Definition 11.3. We say that two functors are equivalent (denoted F ≃ G) if there exist natural
transformations ϕ : F → G and ψ : G→ F such that ψ ◦ ϕ = idF and ϕ ◦ψ = idG.

Exercise 11.4. This implies that for every X ∈ C, the maps ϕX : FX → GX and ψX : GX → FX are
mutually inverse isomorphisms.

Example 11.5. When restricted to finite-dimensional vector spaces, idFin-K-Vect ≃ ∗ ◦ ∗, because the
natural transformation D from before is invertible.

Definition 11.6. We say that F : C → D is an equivalence of categories if there exists an inverse
functor G : D → C such that

F ◦G ≃ idD and G ◦ F ≃ idC

and F is covariant (this implies G is covariant).

If the above holds but F is contravariant, this is an antiequivalence of categories.

Example 11.7. The dual map ∗ : Fin-K-Vect → Fin-K-Vect is an antiequivalence of categories; its
inverse is ∗.

We know this is an antiequivalence because we showed before that ∗ ◦ ∗ ≃ idFin-K-Vect.

Definition 11.8. We say that C is a small category if ob(C),mor(C) ∈ U , where U is our universe
from the beginning of last lecture.

Let J be a small category and let F be a functor F : J → C.
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Definition 11.9. By limit or inverse limit of F (denoted limF or lim
←
F ), we mean an element

X ∈ ob C together with a natural transformation ϕ : CX → F such that if X ′ ∈ ob C and ψ : CX′ → F
is another natural transformation, there exists a unique α : X ′ → X ∈ mor(C) such that ψ = ϕ ◦Cα.

Remember that if ϕ is a natural transformation, this means that for any Y, Y ′ ∈ obJ and f : Y → Y ′ ∈
mor(J ), we have that

X FY

X FY ′

FfidX

ϕY

ϕY ′

commutes, while the second part of this definition means that if there exists some X ′,ψ such that all
diagrams of this form:

X ′ FY

FY ′

Ff

ψY

ψY ′

then there exists a unique α (independent of our choice of Y ) such that the diagram

X ′

X FY

FY ′

ϕY

ϕY ′ Ff

ψY

ψY ′

α

commutes.

Example 11.10.

1. Suppose J only has two objects, and its only morphisms are the identity morphisms for those
objects:

Then, any functor F : J → C just has to identify some X1, X2 ∈ ob(C) to be the images of 1 and
2, respectively.

What is lim
←
F?

Well the only morphisms that ϕ needs to commute with are the images of identity morphisms, which
are still identity morphisms. So we just need some object in X ∈ C and morphisms ϕ1 : X → X1

and ϕ2 : X → X2.

Moreover, for any other X ′ ∈ C with morphisms to X1 and X2, there must be a unique α : X ′ →
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X ∈ mor(C) such that the diagram

X ′

X X1

X2

α

ϕ1

ϕ2

commutes.

Clearly, if C was the category of rings, then X would have to be X1 × X2, and the morphisms
would be the corresponding projection maps.

In general, we say that if we have some small set I, we can create a category CI with its objects
being elements of I and only identity morphisms. Then we say that the product of objects in any
category is ∏

i∈I
Xi = lim

←
(functor sending i 7→ Xi) .

2. Let J be the category containing two objects, their identity morphisms, and two morphisms
between them:

and a functor F : J → K-Vect. To define this functor, we just need to pick two vector spaces V
and W to be the images of the two objects, and then pick two K-linear maps f, g to be images of
the two morphisms.

Then, an inverse limit (X,ϕ) must have the property that

V

X

W

fg

ϕ2

ϕ1

commutes, so for any x ∈ X,
f(ϕ1(x)) = g(ϕ1(x)) = ϕ2(x).

Moreover, for any other X ′ with morphisms such that

V

X ′

W

fg
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commutes, there is a unique homomorphism α : X ′ → X such that

V

X ′ X

W

fgα

ϕ1

ϕ2

commutes.

To make this work, we take X = ker(f − g).

Definition 11.11. By a colimit or direct limit (denoted colimF or lim
→
F ) of F : J → C, we mean

an object X ∈ ob C and a natural transformation ϕ : F → CX such that if there exists some X ′ ∈ ob(C)
and a different natural transformation ψ : F → CX′ , then there is a unique α : X → X ′ ∈ mor(C) such
that ϕ = Cα ◦ψ.

This is exactly like the inverse limit, but with the arrows in the opposite direction.

Example 11.12. If we have a small category J with three objects, their identity morphisms, and two
morphisms between them:

then a functor F : J → Rings is defined by three rings R,S, T and two ring morphisms R → S and
R→ T , so that we have the diagram:

R S

T

Then, the direct limit lim
→
F is just S ⊗R T .
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Lecture 12: Category Theory, III

Let’s review the definition of a limit.

Reminder 12.1. Consider any functor F : J → C. Then, a limit lim← F of this functor is an element
X ∈ ob(C) along with a natural transformation ϕ : CX → F (where CX : J → C is the functor that
maps every object to X and every morphism to idX).

If we have any other X ′ ∈ ob(C) and natural transformation ϕ′ : CX′ → F , then the definition of the
limit tells us there is a unique morphism α : X ′ → X ∈ mor(C) such that the natural transformation Cα

has the property that ϕ′ = Cα ◦ ϕ, so this diagram commutes:

CX F

CX′

ϕ

ϕ′Cα

As a reminder, Cα : CX′ → CX gives us a morphism CX′J → CXJ for every J ∈ obJ such that, for
any morphism f : J → J ′ ∈ mor(J ), the diagram:

CX′J CX′J ′

CXJ CXJ
′

CX′f

Cα,J Cα,J′

CXf

commutes. But we define Cα,J to be α for every J ∈ ob(J ), because then we can see that since
CXJ = X, CXf = idX , CX′J = X ′, and CX′f = idX′ , so this diagram actually becomes

X ′ X ′

X X

idX′

α α

idX

which clearly commutes.

Thus, when we say there is a unique α : X ′ → X that makes Cα commute with the other natural
transformations, we mean that there is a unique α : X ′ → X such that for any J ∈ ob(J ), ϕ′

J = ϕJ ◦α,
where ϕ′

J is a morphism X ′ → FJ and ϕJ is a morphism X → FJ .

The definition of a colimit is similar, but with arrows in the opposite direction (our ϕ is now a natural
transformation F → CX , and the unique homomorphism α now maps X → X ′).

Lemma 12.2. If (X,ϕ) and (X ′,ϕ′) are two limits for F : J → C, then there exists a unique isomor-
phism α : X → X ′ such that ϕ′ ◦Cα = ϕ.

The existence of a morphism α comes from the universal property of X ′, and we get a similar β from the
universal property of X. From there, it is not hard to show that α and β are inverses.
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Lemma 12.3. If (X,ϕ) and (X ′,ϕ′) are two colimits for F : J → C, then there exists a unique
isomorphism α : X → X ′ such that ϕ′ = Cα ◦ ϕ.

Example 12.4.

1. In the category Sets, small colimits and small limits always exist. For any functor F : J → Sets,
the limit lim← F is subset of the Cartesian product:

lim
←
F =

(xJ) ∈
∏

J∈ob(J )

FJ

∣∣∣∣∣∣ for all f : J −→ J ′ ∈ mor(J ), Ff(xJ) = xJ′

 .

This is the same inverse limit we discussed in an earlier pset.

2. In the category Rings, we also always have small colimits and small limits. The construction of
limits is the same as above, but the colimit is a generalization of the tensor product, in the way
we constructed it in the most recent problem set.

Example 12.5. Let us say J has two objects (1) and (2), and just the identity morphisms for each
object, and the morphism F : J → C maps (1) 7→ X1 and (2) 7→ X2 for some X1, X2 ∈ ob(C).
Then, what is the direct and inverse limit for F , for some common categories C?

We have the following table:

C lim
←
F lim

→
F

Sets X1 ×X2 X1

∐
X2

(this is the coproduct, which for
sets is just the disjoint union)

Rings X1 ×X2 X1 ⊗Z X2

K-Vect X1 ⊕X2 X1 ⊕X2

Groups X1 ×X2 X1 ∗X2

(this is the free product)

Definition 12.6. If we have two functors F : C → D and G : D → C, then F is a left-adjoint for
G or G is a right-adjoint for F if for all X ∈ ob(C) and Y ∈ ob(D), there exists a bijective map
ϕX,Y : HomD(FX, Y )→ HomC(X,GY ) such that for all f : X → X ′ ∈ mor(C), the diagram:

HomD(FX, Y ) HomC(X,GY )

HomD(FX
′, Y ) HomC(X

′, GY )

ϕX,Y

f ′ 7→f ′◦Ff

ϕX′,Y

f ′ 7→f ′◦f
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commutes, and similarly for all g : Y → Y ′ ∈ mor(D), the diagram:

HomD(FX, Y ) HomC(X,GY )

HomD(FX, Y
′) HomC(X,GY

′)

ϕX,Y

f ′ 7→g◦f ′

ϕX,Y ′

f ′ 7→Gg◦f ′

commutes.

This relationship between the two functors is called a adjunction.

We can see that ϕX,Y looks very similar to a natural transformation, and in fact we have an equivalent
definition:

Definition 12.7. Let us say that we have functors F : C → D and G : D → C as before, and moreover
that we have natural transformations η : idC → G◦F (so that each ηX is a morphism X → G◦FX) and
µ : F ◦ G → idD (so that each µY is a morphism F ◦ GY → Y ). Then, we way that F is left-adjoint
to G and G is right-adjoint to F if for any X ∈ ob(C) and Y ∈ ob(D),

idFX = µFX ◦ FηX
idGY = GµY ◦ ηGY .

We can see that these equations make sense because idFX ∈ mor(D), ηX ∈ mor(C), F maps ηX to an
element of mor(D), and FX ∈ ob(D) so µFX ∈ mor(D), and similarly for the second equation.

I am leaving it as an exercise to show that this is equivalent to the previous definition of adjunction;
note that such η and µ uniquely determine the adjunction between F and G.

(The above definition is slightly different from the way it was covered in lecture because I was using Wikipedia
to understand it )

Example 12.8. Let G : Rings→ Sets be the forgetful functor. This is a right-adjoint functor; let’s look
for a corresponding left-adjoint.

We want a covariant functor F : Sets→ Rings such that for any set Ω and ring R,

HomRings(FΩ, R) ∼= HomSets(Ω, R).

We say that F (Ω) = Z[Xω]ω∈Ω; this is clearly a ring.

Then, we can see that this is an adjunction using the natural transformations η : idSets → G ◦ F and
µ : F ◦ G → idRings. This means each ηΩ is a morphism Ω → Z[Xω], and we can see it must be the

morphism ω 7→ Xω. Similarly, each µR is a morphism Z[Xr]r∈R → R and we can see it must be the
morphism defined by Xr 7→ r and 1 7→ 1R.

For the following two lemmas, refer to the Canvas notes on adjunctions, as we don’t have time to prove them
in class:

Lemma 12.9. Suppose we have functors F : C → D and G : D → C, so that F is left-adjoint to G.
Then G preserves small limits and F preserves small colimits.
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Theorem 12.10. Up to some set-theoretic considerations, the converse is true. That is, if we know
(something slightly stronger than) G preserves limits, it must have a left-adjoint, and if we know (some-
thing slightly stronger than) F preserves colimits, it must have a right-adjoint.
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Lecture 13: Modules, I

Definition 13.1. We say that M is an R-module if (M,+) is an abelian group and R acts on M with
group action (r,m) 7→ r ·m such that for all r, s ∈ R, m1,m2 ∈M

(1,m) = 1 ·m = m

(r + s) ·m = r ·m+ s ·m
r · (m1 +m2) = r ·m1 + r ·m2

r · (s ·m) = (rs) ·m.

Example 13.2.

1. If R is a field, then R-modules are R-vector spaces.

2. Any abelian group is a Z-module, defined by the fact that

n ·m =

1 + · · ·+ 1︸ ︷︷ ︸
n times

 ·m = m+ · · ·+m︸ ︷︷ ︸
n times

.

3. Ris an R-module.

4. If I �R, then R/I is an R-module.

5. If ϕ : R→ S is a ring homomorphism, then S is an R-module, defined by

r · s = ϕ(r)s.

6. Q2 is a module over Q[T ], where for x, y, z ∈ Q,

z ·
(
x
y

)
=

(
zx
zy

)
and

T

(
x
y

)
=

(
y
−x

)
.

Definition 13.3. We say that ϕ : M → N is a morphism of R-modules or an R-linear map if for
all r ∈ R, m,n ∈M

ϕ(r ·m+ n) = rϕ(m) + ϕ(n).

Specificially, taking m = 0 and r = 1, this implies that ϕ(0) = 0.

Definition 13.4. We say that N is an R-submodule of M if N is a nonempty subset of M (with the
same operations) and for any m,n ∈ N and any r ∈ R, r ·m+ n ∈ N .

Example 13.5.

1. The R-submodules of R are the ideals of R.
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2. {0} ⊂M is an R-submodule of M .

Definition 13.6. We say that R-Mod is the category of small R-modules.

Lemma 13.7. The ideal (0) is an initial object and terminal object of R-Mod.

Lemma 13.8. For any R-modules M,N , HomR-Mod(M,N) is an abelian group, and even an R-module.
We can see that for any r ∈ R, f, g ∈ HomR-Mod(M,N), we can define r · f + g to be the map

(rf + g)(m) = r · f(m) + g(m).

Moreover, the map

HomR-Mod(M,N)×HomR-Mod(N,P ) −→ HomR-Mod(M,P )

(f, g) 7−→ g ◦ f

is an R-bilinear map, in the sense that for any f ∈ HomR-Mod(M,N), the map

HomR-Mod(N,P ) −→ HomR-Mod(M,P )

g 7−→ g ◦ f

is R-linear and for any g ∈ HomR-Mod(N,P ), the map

HomR-Mod(M,N) −→ HomR-Mod(M,P )

f 7−→ g ◦ f

is also R-linear.

Definition 13.9. We say that

M ⊕N =
{
(m,n)

∣∣ m ∈M,n ∈ N
}
,

with the operations defined as

r · (m,n) + (m′, n′) = (r ·m+m′, r · n+ n′).

We have the natural inclusion and projection maps

ι1 :M ↪→M ⊕N, ι2 : N ↪→M ⊕N
π1 :M ⊕N ↠M, π2 :M ⊕N ↠ N,

and we can see that

π1 ◦ ι1 = idM , π2 ◦ ι2 = idN

π2 ◦ ι1 = 0, π1 ◦ ι2 = 0

ι1 ◦ π1 + ι2 ◦ π2 = idM⊕N .

Lemma 13.10. If f : M → P and g : N → P are morphisms of R-modules, there exists a unique
R-module morphism f + g : M ⊕ N → P such that (f + g) ◦ ι1 = f and (f + g) ◦ ι2 = g, so there is a
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unique f + g that makes

M

N M ⊕N

P

f

g

f+g

ι1

ι2

commute.

This is the universal property of the coproduct.

If we have R-module morphisms f : P →M and g : P → N , then there exists a unique f⊕g : P →M⊕N
that makes the diagram

P

M ⊕N M

N

f⊕g

g

f

commute.

This is the universal property of the product.

Note that M ⊕ N is both the product and coproduct of M and N ; this is true for any finite number of
modules.

Lemma 13.11. If f :M → N is a R-Mod morphism, then

ker(f) =
{
m ∈M

∣∣ f(m) = 0
}

is an R-submodule of M , and
im(f) =

{
f(m)

∣∣ m ∈M}
,

which is an R-submodule of N .

Lemma 13.12. IfN is an R-submodule ofM , then the quotient abelian groupM/N is also an R-module.

We have the projection morphism

π :M ↠M/N

m 7−→ m+N.

For any morphism f :M → N , we say that coker f = N/ im f .

Then, M/N = coker(N ↪→M) and im f = ker(N → coker f).

If f : N ↪→M (so f is injective), then

N ∼= ker(M −→ coker f),

and if f : N ↠M (so f is sujrective), then

M ∼= coker(ker f −→ N).
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Definition 13.13. We say that a pair of maps

M N Pf g

is exact at N if im(f) = ker(g) (so g ◦ f = 0 and g(n) = 0 implies n ∈ im f).
A chain

0 M N P 0f g

is short exact if it is exact at M,N, and P , so M ↪→ N and N ↠ P .

Lemma 13.14. Our category R-Mod is an abelian category.

For any small sets I and R-modules Mi, the product or direct product is∏
i∈I

Mi =
{
(mi)

∣∣ mi ∈Mi

}
and the coproduct or direct sum is

⊕
i∈I

Mi =

(mi) ∈
∏
i∈I

Mi

∣∣∣∣∣∣ mi = 0 for all but finitely many i′s

 .

R-Mod also contains all its small limits and colimits. For any functor F : J → R-Mod, we have

lim
←
F =

(mj) ∈
∏

j∈ob(J )

Fj

∣∣∣∣∣∣ for all ϕ : i −→ j ∈ mor(J ), Fϕ(mi) = mj


and if we let N be the module generated by(mj) ∈

∏
j∈ob(J )

∣∣∣∣∣∣ there exists ϕ ∈ mor(J ) such that (mj) = ιi(mi)− ιj(Fϕ(mi))

 ,

then

lim
→
F =

 ⊕
j∈ob(J )

F (j)

 /N.

Example 13.15. Let Ω be a small set. Then we let

FR(Ω) = ⊕ω∈ΩR.

We can see that every element of FR(Ω) can be thought of as a function f : Ω→ R such that f(ω) = 0
for all but finitely many ω ∈ Ω.

As an example, the function

eω(ω
′) =

{
1 if ω′ = ω

0 otherwise

is an element of FR(ω), which looks something like (0, . . . , 0, 1, 0, . . . , 0).
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Since each element in FR(Ω) can be expressed as∑
ω∈Ω

rωeω

for some rω ∈ R (and the eω’s are linearly independent), we can say that {eω} is a basis for FR(Ω) and
this is a free module on Ω.

Lemma 13.16. If we think of FR as a functor Sets → R-Mod, then it is left-adjoint to the forgetful
functor R-Mod→ Sets.

Proof. First, we can see that for any Ω ∈ Sets and M ∈ R-Mod,

HomR-Mod(FR(Ω),M) ∼= HomSets(Ω,M),

via the bijections
ϕ 7−→

(
ω 7→ ϕ(eω)

)(
(rω) 7→

∑
ω∈Ω rωψ(ω)

)
←− [ ψ
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Lecture 14: Modules, II

Last lecture, we left off describing the free module on Ω, for any set Ω.

We said that the function FR(Ω) is a left-adjoint for the forgetful functor, which implies that for any set
morphism Ω → M , where M is an R-module, there exists a unique R-module morphism FR(Ω) → M that
makes the diagram

FR(Ω) M

Ω

commute.

Definition 14.1. We say that M is free if M ∼= FR(Ω) for some Ω.

This implies there is some B ⊂ M such that FR(B) ∼= M , using the isomorphism eb 7→ b. We call B a
basis for M .

Note that saying FR(B) ∼= M is equivalent to saying that every m ∈ M can be expressed uniquely as a
sum of the form

n∑
i=1

ribi bi ∈ B, ri ∈ R.

Example 14.2.

1. Since we know that any vector space has a basis, any module over a field is free.

2. Q is not free as a Z module, because it cannot be generated by a single element, and any two
elements in Q are linearly dependent.

Z/2Z is not free as a Z-module, because {0} and {1} are the only one-element sets, and both of
these are linearly dependent sets since 1 · 0 = 0 and 2 · 1 = 2 = 0.

Intuitively, it is very unlikely that an arbitrary module over a general ring is free. Also, it is fine for a free
module to have an infinite basis, but because we are taking the direct sum (not the direct product) over this
basis, we need all the elements of the module to be expressed as linear combinations of finitely many basis
elements.

Proposition 14.3. If FR(Ω) ∼= FR(Ω
′) then Ω and Ω′ can be put in bijection.

We will not prove this in class, but the trick is to show that for a maximal ideal m � R, FR(Ω) ∼= FR(Ω
′)

implies FR/m(Ω) ∼= FR/m(Ω
′), and since R/m is a field, we are now working within vector spaces, where we

know this result is true.

With the above proposition, we can now have the following definition:

Definition 14.4. If M is free, we can define the rank of M to be #Ω, for any set Ω such that M ∼=
FR(Ω).
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Definition 14.5. If Ω ⊂M is an arbitrary subset, we say that the submodule generated by Ω is

⟨Ω⟩ = im(FR(Ω) −→M) =


n∑
i=1

riωi

∣∣∣∣∣∣ ri ∈ R,ωi ∈ Ω

 .

Proposition 14.6. If N is a submodule of M containing Ω, then ⟨Ω⟩ ⊂ N .

Proposition 14.7. If N1, N2 ⊂ M are submodules then N1 ∩ N2 is also a submodule, and it is the
largest submodule contained in both N1 and N2. Also,

N1 +N2 = {n1 + n2 | ni ∈ Ni}

is a submodule, and it is the smallest submodule containing N1 and N2.

Proposition 14.8. Analogolous to ideals,

N1 +N2/N2
∼= N1/N1 ∩N2,

using the isomorphism n+N2 ←− [ n+N1 ∩N2.
We can visualize this via the diamond

N1 +N2

N1 N2

N1 ∩N2

where pairs of parallel lines represent quotients that are isomorphic.

Proposition 14.9. If N ⊂M is a submodule, there exists a bijection

where π is the projection map M ↠M/N .

Definition 14.10. We say that the dual of M is

M∗ = HomR(M,R).

This is not as nice as the dual in vector spaces, for example:
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Example 14.11. If we consider Z/2Z as a Z-module, then(
Z/2Z

)∗
= HomZ

(
Z/2Z,Z

)
.

But we know that any such homomorphism f has the property that f(0) = 0 and if f(1) = a then
2a = 2f(1) = f(2) = f(0) = 0, so a = 0. Thus, in this case the dual is just {0}.

Definition 14.12. We say that the endomorphisms of M are

EndR(M) = HomR(M,M).

Proposition 14.13. If M is an R-module and T ∈ EndR(M), then M becomes an R[X] module via
the operation (

f0 + f1X + · · ·+ fdX
d
)
·m = f0m+ f1Tm+ f2T

2m+ · · ·+ fdT
dm.

Proposition 14.14. If I �R then

IM =


n∑
i=1

rimi

∣∣∣∣∣∣ ri ∈ I,mi ∈M


is submodule of M .

Example 14.15. If we have the ideal (2)�R then

(2)(Z⊕ Z) = 2Z⊕ 2Z.

Definition 14.16. If Ω ⊂M is a subset of an R-module, then the annihilator in R of Ω is

AnnR(Ω) = {r ∈ R | rω = 0 for all ω ∈ Ω}�R.

Example 14.17. AnnR(R/I) = I.

Example 14.18. Consider Q2 as a Q[X]-module where X acts by T , where

T

(
x
y

)
=

(
y
−x

)
.

What is AnnQ[X](Q2)?

We know that
AnnQ[X](Q2) =

{
f ∈ Q[X]

∣∣ f(T ) = 0
}
�Q[X].

We can see that X2 + 1 ∈ AnnQ[X](Q2), and moreover we can see that if f ∈ AnnQ[X](Q2), then by the
difivision algorithm we can write

f(X) = q(X)(X2 + 1) + (aX + b)
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for some rationals a, b. But this implies aX + b ∈ AnnQ[X](Q2), so for all x, y ∈ Q,

(aT + b)

(
x
y

)
=

(
ay + bx
−ax+ by

)
= 0.

Since we want this to be true for all rational x, y, we can take an arbitrary one, such as x = 1, y = 0

and see that we need

(
b
−a

)
= 0, which implies a and b are both 0, and f is a multiple of X2 + 1.

Thus, AnnQ[X](Q2) = (X2 + 1)�Q[X].

Lemma 14.19. If M is an R-module then the following are equivalent:

1. every submodule of M is finitely generated

2. any nonempty set of submodules of M contains a maximal element

The proof is exactly the same as for ideals.

Definition 14.20. If the above conditions hold, then we say M is noetherian.

Lemma 14.21. R is noetherian as an R-module if and only if R is noetherian as a ring.

This is just because the submodules of R are the ideals of R.

Lemma 14.22. All submodules and quotient modules of noetherian modules are noetherian.

This is follows from property (2) of being noetherian.

Lemma 14.23. If M/N and N are noetherian, so is M .

Proof. Let P ⊂M be a submodule. Then N ∩P is a submodule of N , so it is finitely generated; we can say

N ∩ P = ⟨n1, . . . , nr⟩.

Similarly, there is a map P/N ∩ P ↪→M/N , so since M/N is noetherian, we can say

P/N ∩ P = ⟨m1 +N ∩ P, . . . ,ms +N ∩ P ⟩.

Then, we claim
P = ⟨n1, . . . , nr,m1, . . . ,ms⟩.

To see this, for any p ∈ P , we know that since P/N ∩ P is finitely generated by ⟨mi⟩, we can find some
ri ∈ R such that

p−
s∑
i=1

rimi ∈ N ∩ P,

and then since this difference is in N ∩ P , which is generated by ⟨ni⟩, we know there is some rj ∈ R such
that

p =

r∑
j=1

rjnj +

s∑
i=1

rimi.

Lemma 14.24. If M,N are noetherian, then M ⊕N is noetherian.

We know that M ⊕N/N ∼=M , so this follows from the previous lemma.
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Lemma 14.25. If R is noetherian and M is a finitely generated R-module then M is noetherian.

Proof. We know since M is finitely generated that there is some finite set Ω such that FR(Ω) ↠ M , so M
is a submodule of FR(Ω). But FR(Ω) is a direct sum of finitely many copies of R, so by the previous lemma
it is noetherian, and then we know that a submodule of a noetherian module is also noetherian, so M must
be noetherian.

If D ⊂ R is multiplicative, then we can define an equivalence relation on M ×D by

(m, d) ∼ (n, e)⇐⇒ f(em− dn) for some f ∈ D.

Then D−1M is the set of equivalence classes m/d = [(m, d)].

We leave it as an exercise to check that the operations are well-defined and this is a D−1R-module.

Then,

M −→ D−1M

m 7−→ m/1

is a morphism of R-modules.

For a prime ideal ℘�R, we use M℘ to denote (R− ℘)−1M .

For an element f ∈ R, we use Mf to denote
{
1, f, f2, . . .

}−1
M .

Definition 14.26. We say that a submodule N ⊂ M is saturated with respect to D if for any
m ∈M , d ∈ D such that dm ∈ N , this implies m ∈ N .

Definition 14.27. The D-saturation of N is the set

{m ∈M | there exists d ∈ D such that dm ∈ N} ,

and it is the smallest saturated submodule containing N .
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Lecture 15: Modules, III

Last time, we left off talking about fractions and saturations of modules.

Example 15.1. Consider the ring R = Z and D = Z− (3).

If we look at Z/(2) as a Z-module, then

D−1
(
Z/(2)

) ∼= {0}
because 2 ∈ D so for any a+(2)

b , this is congruent to 2a+(2)
2b = 0+(2)

b .

If we look at Z/(3) as a Z-module, then

D−1
(
Z/(3)

) ∼= Z/(3).

To see this, consider the map

Z/(3) −→ D−1
(
Z/(3)

)
a+ (3) 7−→ a+ (3)

1
.

This is injective because if a+(3)
1 = 0

1 , then there exists some d ∈ D such that d(a+ (3)) = 0 + (3), but

since d is not a multiple of 3, we get that a = 0. It is surjective because for any a+(3)
d , we can take

b = ad−1 ∈ Z/3Z (since this is a field, so we can take inverses), and we get that

b+ (3) 7→ b+ (3)

1
=
ad−1 + (3)

1
=
a+ (3)

d
.

What is the D-saturation of (3)/(6) ⊂ Z/(6), as Z-modules?

By definition, this is the set{
a+ (6)

∣∣ there exists d ∈ D with da+ (6) ∈ (3)/(6)
}
,

but we know that 3 ∤ d for any d ∈ D, so sincd 3 | ad, we get that 3 | a, so this is just the original
submodule (3)/(6).

What is the D-saturation of (2)/(6) ⊂ Z/(6)?

By definition, this is the set{
a+ (6)

∣∣ there exists d ∈ D with da+ (6) ∈ (2)/(6)
}
.

But we can always take d = 2 to make da+ (6) ∈ (2) + (6), so this is the entire set Z/(6).

Let ι be the injective map M → D−1M , m 7→ m/d. This is an R-linear map.
We have a universal property of the fraction module:

Lemma 15.2. If N is a D−1R-module and f : M → N is R-linear, then there exists a unique D−1R-
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linear map f̃ : D−1M → N with f̃ ◦ ι = f ; that is, there is a unique f̃ that makes this diagram
commute:

M N

D−1M

f

ι
f̃

Proof. We can see that if such a map exists, then it must map f̃(m/1) = f(m), and since it is D−1R-linear,
it must map f̃(m/d) = 1/df(m).

What remains is to check that this map is well-defined and a module homomorphism; we leave this as an
exercise.

Definition 15.3. If f :M → N is a morphism of R-modules, then D−1f : D−1M → D−1N is the map
defined by m/d 7→ f(m)/d, and it is a morphism of D−1R-modules.

We have a bunch of lemmas, where we leave the proofs as short exercises (some of these will be homework
problems).

Lemma 15.4. D−1(M/N) ∼= (D−1M)/(D−1N), via the map m+N
d 7→ m/d+D−1N .

Lemma 15.5. D−1(M ⊕N) = D−1M ⊕D−1N .

Lemma 15.6. D−1 commutes with any small colimit and any finite limit.

Note that D−1 does not commute with any (infinite) limit: the map ∞∏
i=1

Z


(0)

−→
∞∏
i=1

Z(0) =

∞∏
i=1

Q

(mi)

d
7−→

(
mi

d

)
is injective but not surjective, because we can have unbounded fractions on the RHS but only bounded
fractions on the LHS.

Lemma 15.7. D−1FR(Ω) ∼= FD−1R(Ω).

Lemma 15.8. If I �R, then D−1(IM) ∼= (D−1I)(D−1M).

Lemma 15.9. If M N P
f g

is exact at N then

D−1M D−1N D−1P
D−1f D−1g

is exact at D−1N .
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Lemma 15.10. If 0→M → N → P → 0 is short exact then so is

0 −→ D−1M −→ D−1N −→ D−1P −→ 0.

Lemma 15.11. If we have a R-module morphism f :M → N , then

ker(D−1f) = D−1(ker f)

coker(D−1f) = D−1(coker f).

Lemma 15.12. Remember that ι :M → D−1M is the injective map defined before. Then, the diagram:

commutes, and ι−1 is a bijection between these two sets.

Here, the fact that ι−1 commutes follows from the fact that the diagram commutes, because we can show
via diagram-chasing that this means ι−1 must be injective and surjective.

The following lemma requires more advanced techniques to prove than just an exercise; it may be a homework
problem later on:

Lemma 15.13. If R is noetherian and M is finitely generated over R, then

D−1 HomR(M,N) ∼= HomD−1R(D
−1M,D−1N).

Example 15.14. If we take R = Z and D = Z− (3), we get that

D−1
(
Z/(6)

)
= D−1

(
Z/(2)⊕ Z/(3)

)
.

But then, applying Lemma 15.5, we get that this equals

D−1
(
Z/(6)

)
= D−1

(
Z/(2)

)
⊕D−1

(
Z/(3)

)
,

and applying what we found before, we get

D−1
(
Z/(6)

)
= 0⊕ Z/(3) = Z/(3).

Example 15.15. Using the same methods as for finding D−1(Z/(3)), we get that

D−1(Z/(9)) = Z/(9).

Definition 15.16. Suppose ϕ : R→ S is a ring morphism. Then, if M is an R-module, we think of the
tensor product S ⊗ϕ,RM as a way of making M into an S-module.
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Specifically, we consider the S-module FS(M), and define N to be the submodule

N = ⟨en + em − em+n, erm − ϕ(r)em⟩r∈R,m,n∈M .

Then, we can say that
S ⊗RM ∼= FS(M)/N,

where s⊗m 7→ sem and m 7→ 1⊗m 7→ em.

For this tensor product, it is usually easier to work with the universal property:

Lemma 15.17. IfN is any S-module and f :M → N is an R-linear map (so f(rm1+m2) = ϕ(r)f(m1)+
f(m2)), then there exists a unique S-linear map f̃ : S ⊗RM → N such that

M N

S ⊗RM

f̃
m 7→1⊗m

f

commutes and f̃(s⊗m) = sf(m).

Proof. We start with the diagram

M N

FS(M)

m 7→em

f

em 7→f(m)

where the map m 7→ em is a set morphism, and the purple arrow is a S-module morphism which comes from
the fact that FS is a left-adjoint for the forgetful functor.
Then, we get that

M N

FS(M)

S ⊗RM

m 7→em

f

em 7→f(m)

sem 7→s⊗m

by the universal property of the quotient module, as long as everything in the kernel of FS(M)→ S ⊗RM
is also in the kernel of FS(M)→ N .
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Lecture 16: Tensor Products of Modules, I

Last time, we left off describing the tensor product S⊗ϕ,RM . We showed the literal definition of the tensor
product and the universal property; we can also describe the tensor prodcut as:

Definition 16.1. We consider forgetful functor ϕ∗ : S-Mod→ R-Mod, N 7→ N , where r ∈ R acts on N
by r · n = ϕ(r) · n.

We can say that the functor S⊗ϕ,R (where M 7→ S ⊗ϕ,RM) is the left-adjoint of the forgetful functor,
so

Hom(S ⊗ϕ,RM,N) ∼= HomR(M,ϕ∗N).

We have the following lemmas about the tensor product, some of which will be homework problems:

Lemma 16.2. For an ideal I �R, we have

R/I ⊗ϕ,RM ∼=M/IM,

where ϕ is a ring homomorphism R→ R/I.

Lemma 16.3. For a multiplicative subset D ⊂ R, we have

(D−1R)⊗ϕ,RM ∼= D−1M,

where ϕ is a ring homomorphism R→ D−1R.

Lemma 16.4. For rings R,S, T ,

T ⊗S
(
S ⊗ϕ,RM

) ∼= T ⊗RM.

We can check the above three lemmas by check that that the expression on the RHS has the universal
property of the tensor product on the LHS.

Lemma 16.5.
S ⊗ϕ,R (M ⊕N) ∼= (S ⊗ϕ,RM)⊕ (S ⊗ϕ,R N).

This is uses the functor definition of S⊗ϕ,R , since it is a left adjoint, which preserves coproducts.

Lemma 16.6. For any small set Ω,

S ⊗ϕ,R FR(Ω) ∼= FS(Ω).

Lemma 16.7. If f :M → N is a morphism of R-modules, there exists a unique morphism of S modules
1⊗ f : S ⊗ϕ,RM → S ⊗ϕ,R N that makes the diagram:

M S ⊗R N

S ⊗RM

1⊗f

m 7→1⊗f(m)
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commute; specifically, this is the map (1⊗ f)(s⊗m) = s⊗ f(m).

Note that this is different from the universal property, because the universal property gives us an S-linear
map S ⊗ϕ,RM → N .

Lemma 16.8. Suppose we have ring morphisms ϕ : R→ S and ψ : R→ T . Then, we can consider the
tensor product of rings S ⊗ring

R T and the tensor product of R-modules S ⊗mod
R T , which turns T as an

R-module into an S-module. These two are isomorphic as S-modules, using the map s⊗ t 7→ s⊗ t.

Proof. Our instinct would be to use the universal property of the ring tensor product, applied to the map
T → S ⊗mod

R T , to get an induced map S ⊗ring
R T → S ⊗mod

R T . However, T → S ⊗mod
R T is a morphism

of S-modules, not necessarily a ring morphism, and in particular we don’t know that S⊗mod
R T is a ring at all.

So we begin by trying to make S ⊗mod
R T into a ring, by defining a multiplication operation. To do so, we

first note that within the R-module T , we can think of “multiplication by t ∈ T” as an element of EndR(T ).
That is, we have the morphism of R-modules

T −→ EndR(T )

t 7−→ (t′ 7→ tt′).

Then, we can extend this into the R-module morphism

T EndR(T ) EndR(S ⊗mod
R T )

t (s⊗ t′ 7→ s⊗ tt′)

We will call this extension f , and leave it as an exercise to check that f is actually an R-linear map.

But then, by the universal property of the module tensor product (Lemma 15.17), this induces an S-linear
map S ⊗mod

R T → EndR(S ⊗mod
R T ), so the diagram

T EndR(T ) EndR(S ⊗mod
R T )

S ⊗mod
R T

f̃t 7→1⊗t

f

commutes. We also know that f̃(s⊗ t) = sf(t), so

f̃(s⊗ t)(s′ ⊗ t′) = s(s′ ⊗ tt′) = ss′ ⊗ tt′.

Using this, we can define multiplication in S ⊗mod
R T as, for x, y ∈ S ⊗mod

R T ,

x · y = f̃(x)(y).

We leave it as an exercise to check that S ⊗mod
R T now has all the properties of a ring (specifically, that

multiplication is commutative and associative and that the distributive property holds).

Then, we claim that the natural map T → S⊗mod
R T is a ring morphism. As a reminder, this map is defined

as t 7→ 1⊗ t, and then we can see that for any t1, t2 ∈ T ,

t1 + t2 7→ 1⊗ t1 + t2 = (1⊗ t1) + (1⊗ t2)
t1t2 7→ 1⊗ t1t2 = (1⊗ t1)(1⊗ t2),
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so this is a ring morphism, as we wanted. We similarly have the ring morphism S → S ⊗mod
R T defined by

s 7→ s⊗ 1, and we can also check that this has the desired properties of a ring morphism.

In order to apply the universal property of the ring tensor product, we want the diagram

R S

T

S ⊗mod
R T

ϕ

ψ

t7→t⊗1

s7→s⊗1

to commute. We can see that going to the right and then down gives us ϕ(r)⊗1, while going down and then
to the right gives us 1⊗ ψ(r). But these are equal, because by definition of the module tensor product and
the way R acts on T ,

ϕ(r)⊗ 1 = 1⊗ r · 1 = 1⊗ ψ(r).
Thus, this diagram commutes, and we can apply the universal property of the ring tensor product to get the
induced map

R S

T S ⊗ring
R T

S ⊗mod
R T

ϕ

ψ

t 7→t⊗1

s 7→s⊗1

α

and we can check that because this diagram commutes, α is the map s⊗ t 7→ s⊗ t.

We leave it as an exercise to check this map is S-linear and invertible; this implies S ⊗ring
R T ∼= S ⊗mod

R T , as
we wanted.

We now turn to talking about multilinear algebra.

Definition 16.9. If we have R-modules M1, . . . ,Ma and P , then we say

ψ :M1 × · · · ×Ma −→ P

is multilinear if for any set of mi ∈Mi and any j, the map Mj → P defined by

m 7−→ ψ(m1, . . . ,mj−1,m,mj+1, . . . ,ma)

is R-linear.

Specifically, this means that ψ is a set morphism from the set-theoretic product M1×· · ·×Ma to P , but
if we hold almost all the coordinates constant, the resulting map Mi → P is an R-module morphism.

Example 16.10. If we take R = R and M = R3, then the cross product

R3 × R3 −→ R3

(x, y) 7−→ x× y
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is a multilinear map, and so is the dot product

R3 × R3 −→ R
(x, y) 7−→ x · y.
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Lecture 17: Tensor Products of Modules, II

Last time, we left off talking about multilinear maps. We will continue our discussion of those today.

Definition 17.1. If ψ :M1 × · · · ×Ma is a multilinear map, we call ψ symmetric if M1, . . . ,Ma =M
and if for any σ ∈ Sa (the symmetric group of order a),

ψ(m1, . . . ,ma) = ψ(mσ1, . . . ,mσa).

Example 17.2. The dot product is a symmetric multilinear map.

Definition 17.3. We call ψ alternating if M1, . . . ,Ma =M and if mi = mj for some i ̸= j implies

ψ(m1, . . . ,ma) = 0.

Definition 17.4. The cross product is an alternating multilinear map.

Lemma 17.5. If ψ is an alternating multilinear map and if σ ∈ Sa then

ψ(mσ1, . . . ,mσa) = (−1)σψ(mσ1, . . . ,mσa),

so permuting the elements changes the sign of the output based on the sign of the permutation.

If 2 ∈ R× then the converse is true.

Proof. We just need to show that a transposition (swapping mi and mj) will flip the sign of the output. We
will just show this for the example of swapping m1 and m2:

Since ψ is alternating, we know that

0 = ψ(m1 +m2,m1 +m2,m3, . . . ,ma)

and then since ψ is multilinear, we get that

0 = ψ(m1 +m2,m1 +m2,m3, . . . ,ma)

= ψ(m1,m1 +m2,m3, . . . ,ma) + ψ(m2,m1 +m2,m3, . . . ,ma)

= ψ(m1,m1,m3, . . . ,ma) + ψ(m1,m2,m3, . . . ,ma) + ψ(m2,m1,m3, . . . ,ma) + ψ(m2,m2,m3, . . . ,ma).

But since ψ is alternating, the first and last terms of this sum are 0, so we get that

ψ(m1,m2,m3, . . . ,ma) = −ψ(m2,m1,m3, . . . ,ma).

For the converse, we will again just consider the example where m1 = m2. Since ψ is anti-symmetric, we
know that swapping m1 and m2 will give us the opposite sign, so we get that

ψ(m1,m1,m3, . . . ,ma) = −ψ(m1,m1,m3, . . . ,ma).

Adding ψ(m1,m1,m3, . . . ,ma) to both sides gives us

2ψ(m1,m1,m3, . . . ,ma) = 0

and when we can multiply both sides by 2−1, we get

ψ(m1,m1,m3, . . . ,ma) = 0,

as we desired.
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Definition 17.6. We say that BilR(M1 ×M2, P ) is the set of all bilinear maps M1 ×M2 → P . This is
an R-module when we define

(rψ + ϕ)(m1,m2) = rψ(m1,m2) + ϕ(m1,m2).

We leave it as an exercise to check that this has all the properties of an R-module.

Similarly, we define MultR(M1× · · · ×Ma, P ) is the set of all multilinear maps M1× · · · ×Ma → P , and
it can be made into an R-module in a similar way.

Lemma 17.7. The R-modules BilR(M1 ×M2, P ) and HomR(M1,HomR(M2, P )) are isomorphic.

Proof. We have the maps
ψ 7−→ (m1 7→ (m2 7→ ψ(m1,m2)))

and
((m1,m2) 7→ f(m1)(m2))←− [ f,

and we leave it as an exercise to check that the images of these maps are in the descired sets, these are
R-module morphisms, and they are inverses of each other.

We are now in a position to define the tensor product of modules. We define these via the following universal
property:

Lemma 17.8. For any R-modules M1 × · · · ×Ma, there is an R-module M1 ⊗ · · · ⊗Ma and a universal
multilinear map

M1 × · · · ×Ma −→M1 ⊗ · · · ⊗Ma

(m1, . . . ,ma) 7−→ m1 ⊗ · · · ⊗ma.

By “universal,” we mean that if ψ :M1×· · ·×Ma → P is multilinear, then there exits a unique R-linear
map ψ̃ :M1 ⊗ · · · ⊗Ma → P such that

M1 × · · · ×Ma P

M1 ⊗ · · · ⊗Ma

ψ

ψ̃

commutes.

Proof. As in our previous construction of the tensor product, we first consider the free module FR(M1 ×
· · · ×Ma). We know since FR is a left-adjoint to the forgetful functor that there exists a unique R-module
morphism f : FR(M1 × · · · ×Ma)→ P such that

M1 × · · · ×Ma P

F (M1 × · · · ×Ma)

ψ

f

commutes.
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But we know that since ψ is multilinear, for any mj ∈Mj , m
′
i ∈Mi, and r ∈ R,

f
(
e(m1,...,mi+rm′

i,...,ma)

)
= f

(
e(m1,...,ma) + re(m1,...,m′

i,...,ma)

)
.

Let N be the submodule of FR(M1 × · · · ×Ma) defined by

N = ⟨e(m1,...,mi+rm′
i,...,ma) − e(m1,...,ma) − re(m1,...,m′

i,...,ma)⟩mj∈Mj ,m′
i∈Mi,r∈R.

Then, we define the tensor product of M1, . . . ,Ma over R to be

M1 ⊗ · · · ⊗Ma = FR(M1 × · · · ×Ma)/N.

Since N is in the kernel of f by definition, we can use the universal property of the quotient to get a unique
ring morphism ψ̃ :M1 ⊗ · · · ⊗Ma → P such that

M1 × · · · ×Ma P

F (M1 × · · · ×Ma)

M1 ⊗ · · · ⊗Ma

ψ

f

ψ̃

commutes.

The pure tensors here are the images of elements of the form (m1, . . . ,ma), and they are denotedm1⊗· · ·⊗ma.

Lemma 17.9. There exists a universal symmetric multilinear map M × · · · ×M︸ ︷︷ ︸
a times

→ Sa(M).

Here, “universal” means that if ψ :M × · · · ×M → P is a symmetric multilinear map then, there exists
an R-linear map ψ̃ : Sa(M)→ P such that

M × · · · ×M P

Sa(M)

ψ

ψ̃

commutes.

We define Sa(M) almost identically to the tensor product in the previous lemma, but we also mod out by

⟨e(m1,...,ma) − e(mσ1,...,mσa)⟩mi∈Mi,σ∈Sa

to preserve the symmetric property.

The pure tensors of this module are also denoted m1 ⊗ · · · ⊗ma.

Lemma 17.10. There exists a universal alternating multilinear map M × · · · ×M︸ ︷︷ ︸
a times

→
∧a

(M).

Here, “universal” means that if ψ :M × · · · ×M → P is a symmetric multilinear map then, there exists
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an R-linear map ψ̃ :
∧a

(M)→ P such that

M × · · · ×M P

∧a
(M)

ψ

ψ̃

commutes.

Again,
∧a

(M) is defined similarly to the tensor product, but we also mod out by

⟨e(m1,...,mi,...,mj ,...,ma) + e(m1,...,mj ,...,mi,...,ma)⟩.

The pure tensors of this module are denoted m1 ∧ · · · ∧ma.

Lets look at some properties of module tensor products.

Proposition 17.11. Suppose that for 1 ≤ i ≤ a, we have R-linear maps fi :Mi → Ni. Then there is a
unique R-linear map

f1 ⊗ · · · ⊗ fa :M1 ⊗ · · · ⊗Ma −→ N1 ⊗ · · · ⊗Na
m1 ⊗ · · · ⊗ma 7−→ f1(m1)⊗ · · · ⊗ fa(ma).

Proof. We can see that if such a map exists, it must be unique, since we have defined the map on the pure
tensors, and these span the tensor product.

Thus, we just need to show the existence of this map. To do so, we first look for a multilinear map
ψ :M1 × · · · ×Ma → N1 ⊗ · · · ⊗Na, so that we can apply the universal property. Clearly, this map must be

ψ(m1, . . . ,ma) = f1(m1)⊗ · · · ⊗ fa(ma).

Is this multilinear?

Well, we can see that

ψ(m1, . . . ,mi + rm′i, . . . ,ma) = f1(m1)⊗ · · · ⊗ fi(mi + rm′i)⊗ · · · ⊗ fa(ma).

Since fi is R-linear, we can expand this into

f1(m1)⊗ · · · ⊗ fi(mi) + rfi(m
′
i)⊗ · · · ⊗ fa(ma),

and then by definition of the tensor product, this is equal to

f1(m1)⊗ · · · ⊗ fi(mi)⊗ · · · ⊗ fa(ma) + r
(
f1(m1)⊗ · · · ⊗ fi(m′i)⊗ · · · ⊗ fa(ma)

)
,

so this is a multilinear map!

Thus, we can apply the universal property of the tensor product to get an induced R-linear map M1⊗ · · · ⊗
Ma −→ N1 ⊗ · · · ⊗Na with the desired properties.

Proposition 17.12. If f :M → N is R-linear, there exists a unique R-linear map

Sa(f) : Sa(M) −→ Sa(N)

m1 ⊗ · · · ⊗ma 7−→ f(m1)⊗ · · · ⊗ f(ma),
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and there exists a unique R-linear map∧a
(f) :

∧a
(M) −→

∧a
(N)

m1 ⊗ · · · ⊗ma 7−→ f(m1) ∧ · · · ∧ f(ma).

As a side note, we can’t always expect that tensor products act according to our intuition:

Example 17.13. Consider the ring R = C[X,Y ]. We can see that there are no nonzero zero divisors
in the ideal (X,Y ) � C[X,Y ], but we claim that there is some z ̸= 0 ∈ (X,Y ) ⊗R (X,Y ) such that
Xz = Y z = 0.

Proposition 17.14. For any permutation σ ∈ Sa, there is an R-linear isomorphism

σ∗ :M1 ⊗ · · · ⊗Ma −→Mσ1 ⊗ · · · ⊗Mσa

m1 ⊗ · · · ⊗ma 7−→ mσ1 ⊗ · · · ⊗mσa

Proof. First, we need to show that such an R-linear map exists. We again induce it from the multilinear
map

M1 × · · · ×Ma −→Mσ1 ⊗ · · · ⊗Mσa

(m1, . . . ,ma) 7−→ mσ1 ⊗ · · · ⊗mσa

We leave it as an exercise to check that this is multilinear.
Then, to check that it is an isomorphism, we will show that (σ−1)∗ = (σ∗)−1.

To do so, first check that id∗ = id.

Then, check that for any transposition τ ,
(στ)∗ = τ∗σ∗.

It is sufficient to show that this holds for pure tensors.

Together, these imply that
(σ)∗(σ−1)∗ = (σ−1σ)∗ = id∗ = id,

so this is an isomorphism.

Proposition 17.15.

M1 ⊗ · · · ⊗Ma
∼= (M1 ⊗ · · · ⊗Mb)⊗ (Mb+1 ⊗ · · · ⊗Ma).

Proof. We start with the multilinear map

M1 × · · · ×Ma −→ (M1 ⊗ · · · ⊗Mb)⊗ (Mb+1 ⊗ · · · ⊗Ma)

defined by
(m1, . . . ,ma) 7→ (m1 ⊗ · · · ⊗mb)⊗ (mb+1 ⊗ · · · ⊗ma).

and we get an induced map from the tensor product. What remains is to show that this map is invertible;
we will finish showing this next lecture.
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Lecture 18: Tensor Products of Modules, III

We continue with our proof of Proposition 17.15 that we left off last lecture.

Proof, cont’d. We want to find a bilinear map

(M1 ⊗ · · · ⊗Mb)× (Mb+1 ⊗ · · · ⊗Ma) −→M1 ⊗ · · · ⊗Ma

which is the inverse of our map in the previous direction.

Recall Lemma 17.7 tells us that the bilinear maps are in isomorphism with

HomR(M1 ⊗ · · ·Mb,HomR(Mb+1 ⊗ · · · ⊗Ma,M1 ⊗ · · · ⊗Ma)).

We want to find a map in this homomorphism set such that

m1 ⊗ · · · ⊗mb 7−→ (mb+1 ⊗ · · · ⊗ma 7→ m1 ⊗ · · · ⊗ma).

We know that for a given m1, . . . ,mb, we can apply the universal property of the tensor product to the
multilinear map

Mb+1 × · · · ×Ma −→M1 ⊗ · · · ⊗Ma

(mb+1, . . . ,ma) 7−→ m1 ⊗ · · · ⊗ma

to get that there is a unique R-linear map f(m1,...,mb) such that the diagram

Mb+1 × · · · ×Ma M1 ⊗ · · · ⊗Ma

Mb+1 ⊗ · · · ⊗Ma

(mb+1,...,ma) 7→m1⊗···⊗ma

f(m1,...,mb)

commutes. So we’ve found a linear map that matches the inner part of our homomorphism.

To get the entire homomorphism, consider the map

f :M1 × · · · ×Mb −→ HomR(Mb+1 ⊗ · · · ⊗Ma,M1 ⊗ · · ·Ma)

(m1, . . . ,mb) 7−→ f(m1,...,ma).

We want this to be a multilinear map so that we can induce an R-linear map from the tensor product.

We will just check that it is linear on M1; it is sufficient to check the behavior on pure tensors. We can see
that

f(rm1+m′
1,...,mb)(mb+1 ⊗ · · · ⊗ma) = (rm1 +m′1)⊗m2 ⊗ · · · ⊗mb ⊗mb+1 ⊗ · · · ⊗ma

= r(m1 ⊗m2 ⊗ · · · ⊗mb ⊗mb+1 ⊗ · · · ⊗ma) + (m′1 ⊗m2 ⊗ · · · ⊗mb ⊗mb+1 ⊗ · · · ⊗ma)

= rf(m1,...,mb)(mb+1 ⊗ · · · ⊗ma) + f(m′
1,...,mb)(mb+1 ⊗ · · · ⊗ma),

as we desired. So this is a multilinear map, and we can apply the universal property once more to get the
induced map

M1 × · · · ×Mb HomR(Mb+1 ⊗ · · · ⊗Ma,M1 ⊗ · · · ⊗Ma)

M1 ⊗ · · · ⊗Mb

f

f̃
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which is R-linear.

Then, we go back from our double homomorphism to a bilinear map, by defining ϕ(x, y) = f̃(x)(y), and
finally we get our induced map

ϕ̃ : (M1 ⊗ · · · ⊗Mb)⊗ (Mb+1 ⊗ · · · ⊗Ma) −→M1 ⊗ · · · ⊗Ma

(m1 ⊗ · · · ⊗mb)⊗ (mb+1 ⊗ · · · ⊗ma) 7−→ m1 ⊗ · · · ⊗ma

which is R-linear.

We leave it as an exercise to check that the map we just constructed is truly an inverse of the map we
constructed in the opposite direction.

Proposition 18.1. If ϕ : R → S is a ring morphism and if M is an R-module, then S ⊗RM , meaning
turning M into an S-module, and S⊗RM , meaning the tensor product of R-modules, are isomorphic as
R-modules.

It is easy to find a map from the module tensor product S⊗RM to the ring-module tensor product S⊗RM ,
but it is harder to find the inverse of this map.

Proposition 18.2. For any R-morphisms M,N,P ,

M ⊗ (N ⊕ P ) ∼= (M ⊗N)⊕ (M ⊗ P ),

via the map
m⊗ (n, p) 7→ (m⊗ n,m⊗ p).

Proposition 18.3. For any sets X,Y ,

FR(X)⊗ FR(Y ) ∼= FR(X × Y ),

via the map ex ⊗ ey ←→ e(x,y).
Similarly,

Sa(FR(X)) ∼= FR(S
a(X)),

via the map e1 ⊗ · · · ⊗ ea ←→ e[(x1,...,xa)].

Proposition 18.4. Suppose < is a total order on X. Then, we define

∧a<(X) =
{
(x1, . . . , xa)

∣∣ xi ∈ X,xi < xj∀i < j
}
.

Then we have ∧a
(FR(X)) ∼= FR(

∧a
<(X)),

via the map

ex1
∧ · · · ∧ exa

7−→

{
0 xi = xj for i ̸= j

(−)σe(xσ1,...,xσa) otherwise,

where σ is the permutation that puts the xi’s in increasing order.

Example 18.5. Let X = {1, . . . , a} with the standard ordering. Then, FR(X) = R⊕a.
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Then, the above proposition tells us that∧a
(R⊕a) ∼= FR(

∧a
<(X)),

but we can see that the only element in
∧a
<(X) is (1, 2, . . . , a), so we get that∧a

(R⊕a) ∼= R.

Similarly, we can see that ∧a−1
(R⊕a) ∼= FR(

∧a−1
< (X)) = R⊕a.

Proposition 18.6. There exists an R-linear map ϕ :M → HomR(
∧a

M,
∧a+1

M) defined by

ϕ(m)(m1 ∧ · · · ∧ma) = m1 ∧ · · · ∧ma ∧m.

Moreover, for any R-module morphism f : M → N ,
∧a+1

f ◦ ϕ(m) = ϕ(f(m)) ◦
∧a

(f); both of these
equal the map ∧a

M −→
∧a+1

N

m1 ∧ · · · ∧ma 7−→ f(m1) ∧ · · · ∧ f(ma) ∧ f(m).

Proposition 18.7. Remember that

EndR(R
⊕a) ∼=Ma×a(R),

where Ma×a(R) is the set of a× a matrices over R.

For any map f ∈ EndR(R
⊕a), there is an induced map

∧a
f :

∧a
(R⊕a) →

∧a
(R ⊕ a) that maps any

basis element e ̸= 0 7→ (det f)e.

We leave it as an exercise to check that this is well-defined and R-linear; this uses the fact that we can
express each fei as

∑
i bijej for some bij ∈ R, and then

det f =
∑
σ∈Sa

(−)σb1σ1
· · · baσa

.

Proposition 18.8. For any f ∈ EndR(R
⊕a), we can construct the commutative diagram

R⊕a HomR(
∧a−1

R⊕a,
∧a

R⊕a)

R⊕a HomR(
∧a−1

R⊕a,
∧a

R⊕a)

g 7→g◦
∧a−1 f

where the horizontal maps are

r 7→ (r1 ∧ · · · ∧ ra−1 7→ r1 ∧ · · · ∧ ra−1 ∧ r),

and we can use bases to show that the horizontal maps are actually isomorphisms.
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Then, adj f or the adjugate of f is the unique map R⊕a → R⊕a that makes the diagram

R⊕a HomR(
∧a−1

R⊕a,
∧a

R⊕a)

R⊕a HomR(
∧a−1

R⊕a,
∧a

R⊕a)

g 7→g◦
∧a−1 fadj f

commute.

We leave it as an exercise to show that adj f is the map such that

adj f ◦ f = (det f) idR⊕a .

Recall that if f ∈ EndR(R
⊕a), we can make it into a map in EndR[T ](R[T ]

⊕a), using the fact that

R[T ]⊕a = R[T ]⊗R R⊕a,

and then mapping f to 1⊗ f ∈ R[T ]⊗R R⊕a.

Definition 18.9. Using this, we say that the characteristic polynomial of f is the polynomial

chf (T ) = cf (T ) = det
(
T idR[T ]⊕a −1⊗ f

)
∈ R[T ].

Lemma 18.10 (Cayley-Hamilton Theorem). For any f ∈ EndR(R
⊕a),

cf (f) = 0.

Proof. Remember that
det(T id−f) = adj(T id−f) ◦ (T id−f),

and we can consider the adjugate as some polynomial

B0 +B1T +B2T
2 + · · ·+BdT

d, Bi ∈ EndR(R
⊕a).

But then applying the composition gives us that polynomial

cf (T ) =

d∑
i=0

(Bi−1 −Bi ◦ f)T,

and we can evaluate this at f to get

cf (f) =

d∑
i=0

(Bi−1f
i −Bif i+1) =

∑
i

(Bi−1f
i −Bi−1f i) = 0.

Corollary 18.11 (Nakayama’s Lemma). Suppose M is a finitely generated R-module, I � R, and
IM =M . Then, there exists some r ∈ I such that (1 + r)M = (0).

Proof. Let us say M is generated by {m1, . . . ,ma}. Then, there is a surjection R⊕a → M and we get the
commutative diagram

R⊕a M

R⊕a M

A id
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where A is some element of EndR(R
⊕a) that makes the diagram commute.

But then, we can see that the diagram should still commute if we apply any polynomial to both vertical
arrows, so in particular

R⊕a M

R⊕a M

cA(A) cA(1)

commutes. But the Cayley-Hamilton theorem tells us that cA(A) = 0, so

cA(1)M = (0).

Since cA(T ) is of the form T a + c1T
a+1 + · · ·+ cdT

a+d, we get that c1, . . . , cd ∈ I, so

cA(1) ∈ 1 + I,

as we desired.

Corollary 18.12. If M is torsion-free and finitely generated over R, and I � R is a proper ideal of R
such that IM =M , then M = (0).

Proof. We know from Nakayama’s Lemma that we can find some r ∈ I such that (1 + r)M = 0, but since
r ∈ I and 1 ̸∈ I, 1+r ̸∈ I, and in particular this means it cannot be zero. But ifM is torsion free, multiplying
by a nonzero element cannot make it zero unless it was already just (0).

Corollary 18.13. Suppose we are in the same scenario as in Nakayama’s Lemma, but I is a subset of
all maximal ideals of R. Then, M = (0).

Proof. This implies that 1+r is not in any maximal ideals of R, which means 1+r is a unit, so if (1+r)M = (0)
then M = (0).

Corollary 18.14. Suppose M is finitely generated over R, and we have found m1, . . . ,ma ∈ M such
that M = ⟨m1, . . . ,ma, IM⟩, where I �R and I is a subset of all maximal ideals of R.

Then, M = ⟨m1, . . . ,ma⟩.
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Lecture 19: Finitely Generated Modules Over a PID

We begin today by stating the structure theorem for finitely generated modules over a PID. The proof of this
theorem is kind of involved, so we will spend the next two lectures looking at examples of why this theorem
is useful, before returning to its proof.

Theorem 19.1. Suppose R is a PID and N ⊂ R⊕n is a submodule. Then, N must be free, and we can
find a basis {e1, . . . , en} of R⊕n and elements

a1 | a2 | · · · | am ̸= 0 ∈ R

such that {aiei} is a basis of N .

Moreover, these ai’s are unique up to associates.

Corollary 19.2 (structure theorem for finitely generated modules over a PID). If R is a PID and M is
a finitely generated R-module, then there exists

a1 | a2 | · · · | am ̸= 0 ∈ R,

where none of the ai’s are units, such that

M ∼= R⊕d ⊕
m⊕
i=1

(
R/(ai)

)
.

Moreover, d,m, and the ai’s are uniquely determined by M .

Note that we call the R/ai terms the invariant factors of M .

Proof. If M is finitely generated by n elements, then we know that M ⊂ R⊕n and there is a projection map
π : R⊕n →M such that

M ∼= R⊕n/ kerπ.

But Theorem 19.1 tells us that

R⊕n/ kerπ ∼=
m⊕
i=1

(
R/(ai)

)
,

and then we account for the fact that the first d such ai’s may be units in R to get that

M ∼= R⊕d ⊕
m⊕

i=d+1

(
R/(ai)

)
,

as we wanted.

Now, we can apply the following lemma, which is a weaker version of the Chinese remainder theorem for
modules:

Lemma 19.3. For ideals (a), (b)�R, if (a) and (b) are comaximal, then

R/(ab) ∼= R/(a)⊕R/(b)

as R-modules.

This gives us the following version of the structure theorem:
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Corollary 19.4. If R is a PID and M is a finitely-generated R-module, then there exists a function
n(π) which maps irreducibles of R to nonnegative integers, such that n(π) = 0 for all but finitely many
π, and multiplicities mi(π), such that

M ∼= R⊕d ⊕
⊕
π∈R

irreducible

n(π)⊕
i=1

R/(πmi(π)),

where d, n(π), and mi(π) are uniquely determined by M .

Proof. In words, this corollary is saying we can express the invariant factors of M as the product of R/I’s,
where the I’s are all powers of prime ideals of R.
To do so, we note that since a PID is a UFD, we can express each ai in the form∏

π∈R
irreducible

πmi(π),

up to associates, and where all but finitely many mi(π)’s are just 0. But then, Lemma 19.3 tells us that

R/(ai) ∼=
∏
π∈R

irreducible

R/(πmi(π)),

and the statement of the corollary follows.

Example 19.5. Find all abelian groups M that can fit into a short exact sequence of the form

0 −→ Z⊕ Z/(5) −→M −→ Z⊕ Z/(10) −→ 0.

The structure theorem tells us that M ∼= Z⊕d ⊕
⊕m

i=1 Z/(ai), for some d,m, {ai}. Can we find any
restrictions on what d,m, and the ai’s must be?

Well, we can see that
M(0) = Q⊕d,

since we can interchange localizing and direct sums, and (Z/(ai))(0) = (0) since ai is in our denominator
set. Moreover, as we showed in the homework, localizing preserves exactness, so

0 Q Q⊕d Q 0
f g

must be a short exact sequence.

But since f must be injective, im f ∼= Q, and since g must be surjective, im g ∼= Q. But this means
Q⊕d/ ker g = im g = Q, and since ker g = im f = Q, we get that d = 2.

Thus, M ∼= Z⊕2 ⊕
⊕m

i=1 Z/(ai) for some m, {ai}. Can we find restrictions on these values?

We define
M tor = {m ∈M | ∃a ̸= 0 ∈ R such that am = 0} .

It should be straightforward to check that this is a submodule of M , and we call this the torsion sub-
module of M .

Then, we can see that M tor ∼=
⊕m

i=1R/(ai), since any element of R/(ai) is killed by ai, but R is an
integral domain so any nonzero element of R cannot be in the torsion submodule.
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We leave it as an exercise to check that taking the torsion submodule preserves left exactness but not
necessarily right exactness (intuitively, since every torsion element has to map to a torsion element to
preserve R-linearity, but it isn’t necessary for R-linearity that the preimage of a torsion element is tor-
sion).

Thus, we have the left-exact sequence

0 Z/(5) M tor Z/(10)f g

We can see that since M tor is a finite group, and im f = Z/(5) must be a submodule of M tor, we get
that #M tor must be a multiple of 5. Similarly, since im g = M tor/ ker g = M tor/(Z/(5)) must be a
submodule of Z/(10), we get that #M tor/5 must be a factor of 10, so

5 | #M tor | 50.

By the fundamental theorem of finite abelian groups, this means our options for M tor are

Z/(5), Z/(10), Z/(5)⊕ Z/(5), Z/(25), Z/(5)⊕ Z/(10), or Z/(50).

Let’s try all these possibilities, and see which ones work.

We begin with M = Z⊕2 ⊕ Z/(5), so we want a short exact sequence

0 Z⊕ Z/(5) Z⊕ Z⊕ Z/(5) Z⊕ Z/(10) 0

We recall that the torsion submodule Z/(5) has to inject into the torsion submodule Z/(5), so we can
use a bit of trial and error from there to get the maps

(a, b) (10a, 0, b)

(x, y, z) (y, x mod 10)

(We leave it as an exercise to check this is short exact.) So M = Z⊕2 ⊕ Z/(5) works!

I encourage you at this point to pause and try the rest of these sequences on your own, and come back
to the lecture notes if you get stuck - it’s not super interesting to read 5 more versions of very similar
exact sequences, but it is a good exercise to make sure you can come up with these maps, and make sure
they are actually R-linear and exact at each module, yourself.

Next, we check M = Z⊕2 ⊕ Z/(10), so we want a short exact sequence

0 Z⊕ Z/(5) Z⊕ Z⊕ Z/(10) Z⊕ Z/(10) 0

We recall that the torsion submodule Z/(5) has to inject into the torsion submodule Z/(10), so we can
use a bit of trial and error from there, recalling we want cokernel equal to Z⊕ Z/(10), to get the maps

(a, b) (5a, 0, 2b)

(x, y, z) (y, 5(z mod 2) + 2(x mod 5))

(We leave it as an exercise to check this is short exact.) So M = Z⊕2 ⊕ Z/(10) works as well!
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Next, we check M = Z⊕2 ⊕ Z/(5)⊕ Z/(5), so we want a short exact sequence

0 Z⊕ Z/(5) Z⊕ Z⊕ Z/(5)⊕ Z/(5) Z⊕ Z/(10) 0

We get the maps

(a, b) (2a, 0, b, 0)

(x, y, z, w) (y, 2w + 5(x mod 2))

(We leave it as an exercise to check this is short exact.) So M = Z⊕2 ⊕ Z/(5)⊕ Z/(5) works!

Next, we check M = Z⊕2 ⊕ Z/(25), so we want a short exact sequence

0 Z⊕ Z/(5) Z⊕ Z⊕ Z/(25) Z⊕ Z/(10) 0

We get the maps

(a, b) (2a, 0, 5b)

(x, y, z) (y, 5x+ 2(z mod 5))

(We leave it as an exercise to check this is short exact.) So M = Z⊕2 ⊕ Z/(25) works!

Next, we check M = Z⊕2 ⊕ Z/(5)⊕ Z/(10), so we want a short exact sequence

0 Z⊕ Z/(5) Z⊕ Z⊕ Z/(5)⊕ Z/(10) Z⊕ Z/(10) 0

We get the maps

(a, b) (a, 0, b, 0)

(x, y, z, w) (y, w)

(We leave it as an exercise to check this is short exact.) So M = Z⊕2 ⊕ Z/(5)⊕ Z/(10) works!

Finally, we check M = Z⊕2 ⊕ Z/(50), so we want a short exact sequence

0 Z⊕ Z/(5) Z⊕ Z⊕ Z/(50) Z⊕ Z/(10) 0

We get the maps

(a, b) (a, 0, 10b)

(x, y, z) (y, z mod 10)

(We leave it as an exercise to check this is short exact.) So M = Z⊕2 ⊕ Z/(50) works!

Thus, we have found all 6 abelian groups M that fit into a short exact sequence of this form.

Note that it is not the case in general that all the M ’s that have the correct d and correct size of M tor fit
into the exact sequence, but it is usually the case that most suchM ’s fit, and if it doesn’t fit, there is usually
an explicit reason why. For example, if M had more generators than the sum of the number of generators
of its neighbors, then there would be no way to fit it into the short exact sequence.

Example 19.6. Suppose K is a field and V is a finite-dimensional K-vector space. Suppose also that
we have T ∈ EndK(V ).
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As we’ve done before, we can make V into a finitely generated K[X] module where X acts via T , so(∑
aiX

i
)
v =

∑
aiT

i(v).

Then, the structure theorem of finitely generated modules over a PID tells us that

V ∼= K[X]⊕d ⊕
m⊕
i=1

K[X]/(ai),

where a1 | a2 | · · · | am ̸= 0 ∈ K[X], deg ai > 0, and each ai is monic (since we can just multiply by the
inverse of the leading term). Moreover, d and the ai’s are uniquely determined by V .

However, since V is finite-dimensional over K, while K[X] is infinite-dimensional over K, we get that
d = 0, so

V ∼=
m⊕
i=1

K[X]/(ai),

and

dimV =

m∑
i=1

deg ai,

since
{
1, . . . , Xdeg ai−1

}
serves as a basis for K[X]/(ai) as a K-vector space.

Note that in the above, we are dealing with an isomorphism of K[X] modules, and then the endomor-
phism T on the left side maps to the endomorphism v 7→ Xv on the right side.

Also, for any other V ′ ∼=
⊕m′

i=1K[X]/(a′i), where T
′ is the endomorphism we used to make V ′ a K[X]-

module, there exists an isomorphism

f : V −̃→ V ′ with f ◦ T = T ′ ◦ f

if and only if V ∼= V ′ as a K[X]-module (the existence of an isomorphism implies they’re isomorphic
as K-vector spaces, and the fact that it commutes with T and T ′ implies they’re isomorphic as K[X]-
modules). This happens if and only if m = m′ and ai = a′i for all i.
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Lecture 20: Finitely Generated Vector Spaces

Today, we continue our example from last time of finitely generated vector spaces V , where we make V into
a K[X] module where X acts as T ∈ EndK(V ), and then

V ∼=
m⊕
i=1

K[X]/(ai)

as a K[X]-module.

We also mentioned that for each K[X]/(ai), the basis is
{
1, X,X2, . . . , Xdeg ai−1

}
, and then the basis for V

combines all these bases, so that dimV =
∑m
i=1 deg ai.

What is the matrix for T with respect to this basis?

We know that T corresponds to multiplication by X, so we can see that, over a singular K[X]/(a), where
a(X) = a1 + · · ·+ ad−1X

d−1 +Xd, the matrix would be

0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 0 −a2
... 0

. . . 0
...

... 1 −ad−1


since each Xi would get mapped to the next basis element Xi+1, but then Xd−1 would get mapped to
Xd = −a1 + · · ·+ (−ad−1)Xd−1 when we take it mod a(X).

Then, we can combine this over our direct sum to get that, for this basis of V , our endomorphism T has the
following matrix:

This is known as the rational canonical form of T .

Proposition 20.1. For each such T , its rational canonical form is unique.

Proof. Based on the matrix in rational canonical form, we can define the polynomials ai(X) = ai0 + · · · +
aidi−1

Xdi−1 +Xdi , and for T to be in rational canonical form, we need a1 | a2 | · · · | am, which means we
can then express V as

K[X]/(a1)⊕ · · · ⊕K[X]/(am).

Thus, if there were two rational canonical forms for T , there would be two such ways to factor V , when we
express it as a K[X]-module where X acts by T , and this contradicts the uniqueness part of the structure
theorem for finitely generated modules over a PID.
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Proposition 20.2. For such T , chT (X) = a1(X) · · · am(X).

Proposition 20.3. There exists a monic polynomial mT (X) where mT (T ) = 0 and if f(T ) = 0 then
mT | f . This is called the minimal polynomial of T .

Proof. Consider the annihilator of V ; we can see that this is the set

AnnK[X](V ) =
{
f ∈ K[X] | f(T ) = 0

}
,

and it is an ideal of K[X].

But since K[X] is a PID, this ideal must be equal to some (mT )�R[X], and then mT is our desired minimal
polynomial.

Moreover, we can see that since such a polynomial exists, it must be equal to the gcd of a1, . . . , am, and
since all other ai’s are factors of am, we get that

mT (X) = am(X).

Definition 20.4. If we have two endomorphisms A,B ∈ Mn×nK, we say that A and B are similar if
there exists g ∈ GLn(K) such that

B = gAg−1.

Note that this happens if and only if (K⊕n, A) ∼= (K⊕n, B), which happens if and only if A and B have the
same invariant factors.

Thus, we can divide such endomorphisms into conjugacy classes of similar matrices. Let’s try this with a
few examples.

Example 20.5. Determine the conjugacy classes of GL3(F2).

As we just mentioned, the conjugacy classes are determined by the invariant factors, so we want to find
all possible invariant factors for F3

2 as a F2[X]-module.

This means we are looking for monic polynomials a1 | · · · | am ∈ (Z/2Z)[X] where deg a1 ≥ 1 and
deg a1 + · · ·+ deg am = 3.

But we are also looking for invertible matrices, and we note that a matrix is invertible if and only if

0 ̸= det(T ) = chT (0) = a1(0) · · · am(0).

Thus, we want to pick our invariant factors such that am is not a multiple of X.

We proceed via casework on the size of m.

When m = 1, we are looking for monic degree-3 polynomials with constant term 1. Thus, we get the
following options {

x3 + 1
}

{
x3 + x2 + 1

}
{
x3 + x+ 1

}
{
x3 + x2 + x+ 1

}
.
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When m = 2, we need two polynomials where one is a multiple of the other and their degrees sum to 3.
Thus, we need a linear polynomial and a quadratic, and since we want neither of them to be multiples
of X, we get: {

x+ 1, (x+ 1)2 = x2 + 1
}

as our only option.

Finally when m = 3, we need all our polynomials to be linear, and since they’re all multiples of each
other, we get

{x+ 1, x+ 1, x+ 1}

as our only option.

Thus, there are 6 conjugacy classes, corresponding to each set of invariant factors.

What are the representatives of the conjugacy classes?

In the beginning of lecture today, we learned how to put our matrices in rational canonical form, based
on the invariant factors. Doing this gives us the following table of representatives:

invariant factors representative

{x+ 1, x+ 1, x+ 1}

1 0 0
0 1 0
0 0 1


{
x+ 1, x2 + 1

} 1 0 0
0 0 1
0 1 0


{
x3 + 1

} 0 0 1
1 0 0
0 1 0


{
x3 + x2 + 1

} 0 0 1
1 0 0
0 1 1


{
x3 + x+ 1

} 0 0 1
1 0 1
0 1 0


{
x3 + x2 + x+ 1

} 0 0 1
1 0 1
0 1 1



Example 20.6. Determine the number of conjugacy classes for g ∈ GL3(K) with g5 = 1, for various
fields K.
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Here, we are looking for monic polynomials a1 | · · · | am ∈ K[X] where deg a1 > 0, deg a1+· · ·+deg am =
3, and g is a root of X5 − 1, so mg = am | x5 − 1.

(a) when K = C:
In this case, note that we can factor x5 − 1 as

(x− 1)(x− ζ)(x− ζ2)(x− ζ3)(x− ζ4), ζ = e2iπ/5.

Then, we again proceed via casework on the size of m.

When m = 1:
We know that deg a1 = 3, so a1 must be a product of three distinct factors

(x− ζk1)(x− ζk2)(x− ζk3).

Since the order of these factors doesn’t matter, there are(
5

3

)
= 10 choices

for the invariant factors.

When m = 2:
We know that deg a1 = 1 and deg a2 = 2, so our invariant factors are of the form{

(x− ζk1), (x− ζk1)(x− ζk2)
}
.

There are 5 choices for the first factor and then 4 choices for the second factor, for a total of

20 choices

for the invariant factors in this case.

When m = 3:
We know that a1 = a2 = a3 and all of these are linear factors of x5 − 1, so there are

5 choices

for the invariant factors in this case.

This gives us a total of 35 such conjugacy classes.

(b) when K = R:

When m = 1:
We know that deg a1 = 3, so this must be a product of three distinct factors of x5 − 1. But for
this product to have real coefficients, the product must be of the form (x− 1)(x− ζk1)(x− ζ5−k1),
since ζk1 and ζ5−k1 are complex conjugates. We can see that then we have

2 choices

for the k1, 5−k1 pair, and therefore there are only two possible sets of invariant factors in this case.

95



Math 210a Aditi Talati Fall 2022

When m = 2:
We know that deg a1 = 1 and deg a2 = 2. But then for a1 to have real coefficients, we must have
a1 = x− 1, and then there is no other linear factor of x5 − 1 that we can multiply by x− 1 to get
a polynomial with real coefficients, so there are no options with m = 2.

When m = 3:
We can see that x − 1 is our only factor with real coefficients, so {x− 1, x− 1, x− 1} is our only
option in this case.

This gives us a total of 3 such conjugacy classes.

(c) when K = F2:

In this field, we can factor x5− 1 as (x− 1)(x4 +x3 +x2 +x+1). We claim that the latter term is
irreducible: we can see that it has no linear factors because neither 0 nor 1 are roots, so if it were
to have a factorization, it would be into two quadratics. But the only irreducible quadratic in this
field is x2 + x+ 1, and (x2 + x+ 1)2 = x4 + x2 + 1, which is not the factor we have above. Thus,
this is irreducible.

But then, we know that we cannot use our x4 + x3 + x2 + x + 1 factor, because it is too large,
so all our invariant factors have to be x + 1, and therefore our only conjugacy class is the one
corresponding to

{x+ 1, x+ 1, x+ 1} .

(d) when K = F5:

In this field, we can see that x5 − 1 = (x− 1)5.

Then, when m = 3, we get the invariant factor
{
(x− 1)3

}
, when m = 2 we get the invariant factors{

x− 1, (x− 1)2
}
and when m = 1 we get the invariant factors {x− 1, x− 1, x− 1}, for a total of

3 conjugacy classes.
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Lecture 21: Proof of the Structure Theorem

We begin by returning to our vector space V over a field K, where we can make V into a K[X]-module by
having X act by some endomorphism T ∈ EndK(V ). The structure theorem for modules over a PID tells
us that we then have some monic polynomials a1 | · · · | am where deg ai > 0, such that

V ∼=
m⊕
i=1

K[x]/(ai),

and then we can use the obvious basis to write V as a matrix in rational canonical form.

If K is algebraically closed, there is another way we can express this matrix. We can see that since K[X] is
a UFD, we can express each ai, up to associate factors, as

pm1
1 pm2

2 · · · p
mki

ki

where each pj is irreducible. But since K is algebraically closed, we know that all of the irreducible factors
are linear, so we can write each pj as X − λj . Thus, we can write

V ∼=
ℓ⊕
j=1

K[X]/(X − λj)mj ,

for some λj ∈ K. (Note that these λj ’s can repeat, since ai and ai+1 will have common factors.)

But then, we can write the “multiplication by X” matrix over K[X]/(X − λj)mj with respect to the basis{
1, X − λj , . . . , (X − λj)mj−1

}
.

We can see that 1 gets mapped to X, which equals 1(X − λj) + λj(1), and similarly, for any k < mj − 1,
(X − λj)k gets mapped to 1(X − λj)k+1 + λj(X − λj)k. However, (X − λj)mj−1 gets mapped to X(X −
λj)

mj−1 = λj(X − λj)mj−1when taken mod (X − λj)mj . Thus, we get the matrix
λj 0 · · ·
1 λj 0 · · ·

0
. . .

. . .
... 1 λj


with λj along the diagonal, 1’s below the diagonal, and zeroes everywhere else.

Then, combining across the dot product, we get the final matrix
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with λj ’s on the diagonal, 1’s below the diagonal (besides at the end of a block, and zeroes everywhere else.
Note that blocks may be of different sizes, because the (x − λj)s may appear with different multiplicities,
and there can be multiple λj ’s which are equal.

This is known as Jordan normal form. It is easier to work with than the rational canonical form (as in,
it is more clear to see what to do if we try to take large powers of this matrix) but it only exists when K is
algebraically closed.

This concludes our discussion of applications of the structure theorem for finitely generated modules over a
PID; we now turn to a proof of the theorem.

As a reminder, we had:

Theorem 19.1. Suppose R is a PID and N ⊂ R⊕n is a submodule. Then, N must be free, and we can
find a basis {e1, . . . , en} of R⊕n and elements

a1 | a2 | · · · | am ̸= 0 ∈ R

such that {aiei} is a basis of N .

Moreover, these ai’s are unique up to associates.

We will prove this now.

Proof. The case where N = (0) is clear, so we assume N is nonzero.

Our intuition is that, in the basis we are trying to construct, every basis element of N is a multiple of a1, so
for any linear map R⊕n → R, we expect the image of N to be a subset of (a1)�R, so maybe we can define
a1 by looking at such maps ...

Let us consider the set
X =

{
ϕN �R

∣∣∣ ϕ : R⊕N −→ R is R-linear
}
.

This is nonempty, because we know for example that πi, which maps each element of R⊕n to its ei-coordinate,
is such an R-linear map. Then, since this is a nonempty set of ideals of R, which is a PID and therefore
noetherian, we know there is a maximal element, which we will call

(a1) = ϕ1N,

noting that we know this ideal is principal because this is a PID.

Now, we can see that if ϕ1(N) = (a1), we can find some y ∈ N such that ϕ1(y) = a1. We claim that for any
other ψN ∈ X , ψ(y) is still a multiple of a1.

To prove this, we can consider the ideal (ϕ1(y), ψ(y)) = (a1, ψ(y)) ⊇ (a1). Since R is a PID, this ideal is just
(d) for some d ∈ R. This means there exists α, β ∈ R such that

d = αϕ1(y) + βψ(y) = (αϕ1 + βψ)(y).

But since y ∈ N , this means that
(αϕ1 + βψ)(N) ⊇ (d) ⊇ (a1),

and since the ideal on the LHS is also an element of X , we get that (αϕ1 + βψ)(N) = (a1) so as to not
contradict the maximality of ϕ1(N) ∈ X . But then d = (a1, ψ(y)) = (a1), so ψ(y) ⊂ (a1), as we desired.
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Specifically, this means that for each projection map πi, which projects an element of R⊕n onto its ei-
coordinate, we get that πi(y) ∈ (a1). This means that as a whole, y is a multiple of a1, so we can write

y = a1y1,

and we can see that by R-linearity of ϕ1, ϕ1(y1) = 1.

But this means that for any m ∈ R⊕n, we can write

m = ϕ(m)y1 + (m− ϕ(m)y1),

and we can see that ϕ(m− ϕ(m)y1) = ϕ(m)− ϕ(m)ϕ(y1) = 0, so

R⊕n = Ry1 ⊕ kerϕ1

and therefore
N = Ra1y1 ⊕N ∩ kerϕ1.

From here, we would want to continue this process by inductively pulling out Ry2 from kerϕ1 and a corre-
sponding Ra2y2 from N ∩ kerϕ1, and so on. But in our proof above, we used the fact that R⊕n is free over
R. So we first need to show that kerϕ1 and N ∩ kerϕ1 are free R-modules.

Claim. Any submodule M of R⊕n is free.

We will prove this via induction on the dimension ofM(0). For a base case, we can see that when dimM(0) = 0,
this means that M = (0) and therefore M is free. For the inductive case, assume dimM(0) = k > 0. Then,
we can use the above process to write M = Ra′1y

′
1 ⊕ (M ∩ ϕ′1), for some a′1 ∈ R, y′1 ∈ R⊕n, ϕ′1 : R⊕n → R.

But then M ∩ ϕ′1 is a different submodule of R⊕n, and we can see that since

M(0) = QR+ (M ∩ kerϕ′1)(0),

(M ∩ kerϕ′1)(0) must have dimension k − 1, so we can apply the inductive hypothesis to see that M is the
direct sum of two free modules and is therefore free as well. Thus, via induction, we get that any submodule
of R⊕n is free.

Thus, by our claim, kerϕ1 is a submodule of R⊕n and therefore is free, so we can repeat our extraction step
above (with kerϕ1 substituted for R⊕n and N ∩ kerϕ substituted for N) to get some ϕ2, a2, y2 such that

kerϕ1 = Ry2 ⊕ kerϕ2

N ∩ kerϕ1 = Ra2y2 ⊕N ∩ kerϕ1 ∩ kerϕ2.

Continuing inductively, and plugging back into our original equations, we get that

R⊕n = Ry1 ⊕Ry2 ⊕ · · · ⊕Ryn ⊕ kerϕn

N = Ra1y1 ⊕Ra2y2 ⊕ · · ·Ranyn ⊕N ∩ kerϕ1 ∩ · · · ∩ kerϕn.

But we know that the degree of R⊕n is n, so kerϕn must be (0), and then we get our desired bases.

The last step is to make sure that each ai divides ai+1. We will just show that a1 | a2; to show the rest, one
can proceed inductively.

We can see that there is an R-linear map ψ : R⊕n → R such that

ψ(y1) = ψ(y2) = 1

but for all other basis elements yi,
ψ(yi) = 0.
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Thus, ψ maps an element of R⊕n to the sum of its y1 coefficient and its y2 coefficient.

But this implies that
ψ(N) = (a1, a2) ∈ X .

But since (a1) is maximal in X , (a1, a2) = (a1), so a1 | a2, as we desired.

Recall the corollary:

Corollary 19.2 (structure theorem for finitely generated modules over a PID). If R is a PID and M is
a finitely generated R-module, then there exists

a1 | a2 | · · · | am ̸= 0 ∈ R,

where none of the ai’s are units, such that

M ∼= R⊕d ⊕
m⊕
i=1

(
R/(ai)

)
.

Moreover, d,m, and the ai’s are uniquely determined by M .

We proved this based on the above theorem last time, so I will not restate the proof.

However, we have not yet shown uniqueness of the invariant factors. We will do that now.

Theorem 21.1. In the above corollary, d,m and the ideals (ai) are uniquely determined by M .

To prove this, we first have the following lemma:

Lemma 21.2. If c1 | · · · | ct are elements of R such that c1 /∈ R×, then t is the minimal number of
generators for the module

M = R/(c1)⊕R/(c2)⊕ · · · ⊕R/(ct).

Proof. We know there exists some maximal ideal m ⊃ (c1). Then

M/mM ∼= R/m⊕R/m⊕ · · · ⊕R/m︸ ︷︷ ︸
t times

.

If M can be generated by s < t elements, then M/mM can be as well, but M/mM is a dimension-t vector
space over R/m, so this is a contradiction.
Thus, t is the minimal number of generators for this module.

Based on this, we have a proposition which proves the theorem:

Proposition 21.3. If

R⊕d ⊕
m⊕
i=1

R/(ai) ∼= R⊕e ⊕
n⊕
i=1

R/(bi),

where a1 | · · · | am ̸= 0 and b1 | · · · | bm ̸= 0, and a1, b1 /∈ R×, then d = e, m = n, and for each i,
(ai) = (bi).

Proof. First, we will localize at (0) to get that

QR⊕d ∼= QR⊕e,

which implies d = e.
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From this point, we will assume d = e = 0. We can do this because it is the same as working within the
submodule M tor; this is just easier notationally.

By our lemma, m is the minimum number of elements needed to generate M , so n ≥ m. But we can also
apply our lemma to

⊕n
i=1R/(bi) to get that m ≥ n, so we conclude that m = n.

Then, for any a ∈ R, we say that M [a] is the submodule of M defined by

M [a] = {m ∈M : am = 0} .

We can see that for any i, R/(ai)[a] is the set of equivalence classes of elements r ∈ R such that ra is a multi-
ple of ai. This is (rai,a)/(ai), where rai,a gcd(ai, a) = ai. Note that (rai,a) = R whenever a is a multiple of ai.

Thus, we have that, for any a ∈ R,

M/M [a] ∼=
n⊕
i=1

R/(rbi,a)
∼=

n⊕
i=1

R/(rai,a).

Then, taking a = ai, we get that the first i terms zero out, M/M [ai] must have n − i generators. But this
means that exactly the first i terms of the direct sum on the LHS must zero out, so we get that ai | bi | · · · | bn,
and applying the lemma to M/M [bi] similarly gives us bi | ai | · · · | an, so (ai) = (bi), as we desired.
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Lecture 22: Additive Categories, Abelian Categories, and Sheaves

Recall that X is an initial object for a category C if for every Y ∈ ob(C), there exists a unique morphism
X → Y .

Similarly, X is a final object for a category C if for every Y ∈ ob(C), there exists a unique morphism Y → X.

Using this, we have the following definitions:

Definition 22.1. We say that a category C is a pointed category if C has an initial object and a final
object, and the two are isomorphic.

We call this the null object of the category, and denote it (0).

Note that if C is pointed, then for any X,Y ∈ ob(C), there exists a unique morphism X → Y such that the
diagram

X (0) Y

commutes. This is called the zero morphism.

Proposition 22.2. If our category is pointed, and finite products and coproducts exist, then there is a
natural morphism from the coproduct to the product.

Proof. We will show that for any X,Y ∈ ob(C), there exists a natural morphism X
∐
Y → X × Y .

We can first see that the universal property of the product gives us a natural morphism X → X × Y , via
the commutative diagram:

X

X × Y X

Y

0
π

π

and we can similarly get a natural morphism Y → X ×Y . But then the universal property of the coproduct
gives us a natural morphism α : X

∐
Y → X × Y , via the diagram

Y

X X
∐
Y

X × Y

α

ι

ι

Now, we will assume that α is an isomorphism.

In this case, we denote the finite product/coproduct as X ⊕ Y .
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Definition 22.3. For any X ∈ ob(C), the diagonal embedding ∆ is the unique morphism X → X⊕X
that makes the diagram

X

X ⊕X X

X

π1

π2

id

id

∆

commute; its existence follows from the universal property of the product.

Definition 22.4. For any X ∈ ob(C), the addition map is the unique morphism that makes the
diagram

X

X X ⊕X

X

commute.

Definition 22.5. We say that C is an additive category if:

• C has a null object
(this gives us a zero morphism between any two objects)

• C has finite products and coproducts
(this, combined with the zero morphism, gives us a morphism from the coproduct to the product)

• any finite coproduct is isomorphic to the corresponding finite product
(this lets us define the addition map)

• there exists an − idX ∈ HomC(X,X) such that the induced map

X

X ⊕X X

X X

+π2

π1

idX

idX
− idX

idX

α

α ◦+ equals the zero morphism.

Proposition 22.6. When C is an additive category, then for any X,Y ∈ C, we can give HomC(X,Y ) an
abelian group structure.

To make HomC(X,Y ) into an abelian group, we define f+g to be the induced map X → Y ⊕Y → Y defined
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by

X

Y ⊕ Y Y

Y Y

f

g

+

We leave it as an exercise to show that additive inverses follow from the last part of the definition.

Proposition 22.7. In an additive category C where HomC(X,Y ) has this abelian group structure, the
composition map

◦ : HomC(X,Y )×HomC(Y,Z) −→ HomC(X,Z)

is bilinear, in the sense that for any f ∈ HomC(X,Y ) the map

HomC(Y, Z) −→ HomC(X,Z)

g 7→ f ◦ g

is a group homomorphism, and for any g ∈ HomC(Y, Z) the map

HomC(X,Y ) −→ HomC(X,Z)

f 7→ f ◦ g

is also a group homomorphism.

Definition 22.8. We say that a functor between additive groups is additive if it preserves finite prod-
ucts and coproducts, and initial and final objects.

Thus, if C is an additive group, and F is additive, the map

F : HomC(X,Y ) −→ HomD(FX,FY )

is also a group homomorphism.

Definition 22.9. We say that a category C is pre-additive if we give each HomC(X,Y ) the structure
of an abelian group, such that for any X,Y, Z ∈ ob(C), the composition map

◦ : HomC(X,Y )×HomC(Y,Z) −→ HomC(X,Z)

is bilinear.

Definition 22.10. A functor F between pre-additive categories C and D is called additive if

F : HomC(X,Y ) −→ HomD(FX,FY )

is a group homomorphism.

We just showed that all additive categories have this group structure, so we can think of additive categories
as a special type of pre-additive category. In fact, we have that:

Proposition 22.11. A category C is additive if and only if it is pre-additive and has finite products and
coproducts.
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Proof. In our discussion of additive categories above, we already showed that if C is additive, it has finite
products and coproducts, and it is pre-additive.

For the other direction, we need to show that if C has finite products and coproducts and is pre-additive,
then it has a null object, and the finite products are isomorphic to the finite coproducts.

Because C has finite coproducts, it has an initial object Xi (as the empty coproduct), and because it has
finite products, it has a terminal object Xf (as the empty product). By definition of the initial object, there
is a unique morphism Xi → Xf , and moreover, since HomC(Xf , Xi) is an abelian group, it must have a 0.
To show that Xi

∼= Xf , we must show that these morphisms are inverses. We have the maps

Xi Xf Xi
0

but we know that id is the unique morphism Xi → Xi, so this composition must be the identity. Similarly,
we have the composition

Xf Xi Xf
0

but we know that id is the unique morphism Xf → Xf (since by definition of the final object, these mor-
phisms are unique), so this composition must also be the identity.

Thus, the initial and final objects are isomorphic, so this category has a null object.

Then, we need to show that for any X,Y ∈ ob(C), X
∐
Y ∼= X × Y . We will do this via a series of

commutative diagrams. First, we can see that by definition of the coproduct, there exist unique maps
X

∐
Y → X such that the diagram

Y

X X
∐
Y

X

ι

0

idX

ι

commutes, and we can find a similar map X
∐
Y → Y . But then, by the universal property of the product,

there exists a unique α : X
∐
Y → X × Y such that the diagram

Y

X X
∐
Y

X × Y Y

X

ι

ι

α

πX

πY

idY

idX

commutes, where the green maps are the induced morphisms we just found.

Then, we claim that α has inverse ιX ◦ πX + ιY ◦ πY . We can see that

(ιX ◦ πX + ιY ◦ πY ) ◦ α ◦ ιX = ιX ◦ (πX ◦ α ◦ ιX) + ιY ◦ (πY ◦ α ◦ ιX) = ιX + 0 = ιX .

Similarly, we can see that this composition, composed with ιY , gives us ιY , and then applying the universal
property of the coproduct, we can see that this must be the identity map idX

∐
Y .
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We can apply similar logic to see that α ◦ (ιX ◦πx+ ιY ◦πY ) must be the identity map idX×Y , and therefore
these two maps are inverses and α really is an isomorphism.

We leave it as an exercise to check that, if we start with a preadditive category which has finite products
and coproducts, the additive structure we get from the addition map coincides with the additive structure
we get from the preadditive category.

Recall that a monomorphism is a morphism f : X → Y , such that, for any other g : Z → X, h : Z → X,
f ◦ g = f ◦ h only if g = h. We can think of this as a generalization of injectivity.

A epimorphism is a morphism f : X → Y , such that, for any other g : Y → Z, h : Y → Z, g ◦ f = h ◦ f
only if g = h. We can think of this as a generalization of surjectivity.

Using this, we have the following definition:

Definition 22.12. We say that an additive category C is abelian if for any f ∈ HomC(X,Y ), the
diagram

X Y
f

0

has a limit ker f → X (called a kernel) and a colimit Y → coker f (called a cokernel), and, moreover,
any monomomorphism is the kernel of some X → Y , and any epimorphism is the cokernel of some
X → Y .

We leave it as an exercise to check that any kernel is a monomorphism and any cokernel is an epimorphism.

Example 22.13. R-Mod is an example of an abelian category.

Another example is: if Γ is an abelian group, then Γ-Mod, which is the set of abelian groups M with
some defined action of γ on M , is an abelian category.

We will now move on to talking about sheaves.

Example 22.14. Let X be a topological space. Then, we can define the category Open(X) to be the
category of all open subsets of X, where the only morphisms are inclusion morphisms between objects
and their supersets.

Definition 22.15. We say that a pre-sheaf on X is the contravariant functor F : Open(X) → Ab.
This means that for all open sets U, V ⊂ X we associate abelian groups F (U) and F (V ), and if V ⊂ U
then we have a morphism F (U)→ F (V ), called the restriction morphism.

Notation-wise, we say that the restriction morphism maps m ∈ F (U) to m|V .

Moreover, for F to be a pre-sheaf, we require the restriction morphisms to have the property that for
any W ⊂ V ⊂ U , the diagram

F (U) F (V ) F (W )
m 7→m|V m 7→m|W

m 7→m|W

commutes.

Note that there is a bit of notational ambiguity here, because our notation for the restriction morphism only
indicates the codomain, and not the domain, of the restriction. This means there are times in the rest of
this lecture where we use the same notation to indicate two different morphisms; please be careful about this
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when trying to read the lecture notes!

Definition 22.16. A morphism between pre-sheaves is a natural transformation ϕ : F → G, which
means that it collection of maps ϕU : F (U)→ G(U) such that for all V ⊂ U , the diagram

F (U) G(U)

F (V ) G(V )

ϕU

ϕV

m7→m|V m 7→m|V

commutes, or
ϕ(m)|V = ϕ(m|V ).

Definition 22.17. Now that we have morphisms between pre-sheaves, we can define Pre-Sh(X) as the
category of all pre-sheaves on X.

Definition 22.18. We say that a pre-sheaf F is a sheaf if for all open sets U ⊂ X and for all open
covers {Ui}i∈I of U , F (U) is the limit of

∏
i F (Ui)

∏
i,j F (Ui ∩ Uj)

(si)i 7→(si|Ui∩Uj
)(i,j)

(si)i 7→(si|Ui∩Uj
)(j,i)

Intuitively, we want the behavior of F (U) to match the behavior of F on the open cover, at the places where
the open cover agrees with itself.

More formally, this implies that:

• If s ∈ F (U) such that s|Ui
= 0 for all i, then s = 0.

• If we have some (si) ∈
∏
i F (Ui) such that, for all i, j, si|Ui∩Uj = sj |Ui∩Uj (so the two arrows in the

diagram agree), then there is a unique s ∈ F (U) such that for all i, s|Ui
= si.

Proposition 22.19. We say that Sh(X) is the category of all sheaves on X; this is a full subcategory
of Pre-Sh(X)

Example 22.20. One sheaf on X is the functor C, where

C(U) = {f : U −→ C continuous} .

Then, the restriction morphism is what we might expect: if V ⊆ U and f : U → C, then f |V is just the
restricted function V :→ C.

Moreover, we can see that if Ui, Uj ⊂ U , then for any f ∈ U ,

f |Ui |Ui∩Uj = f |Uj |Ui∩Uj .
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Lecture 23: Exact Sequences in Abelian Categories

We begin by finishing our lecture on sheaves.

If X is a topological space, F is a pre-sheaf on X, and U ⊂ X is an open set, then:

Definition 23.1. We say that F (U) is a section of F at U .

Definition 23.2. We say that
Fx = lim→

U |x∈U
F (U)

is the stalk of F at x.

We also have the following remark, which we will not prove in class:

Proposition 23.3. If F,G are sheaves on X, then:

The following statements are equivalent:

• ϕ : F → G ∈ mor(Sh(X)) is a monomophism

• ϕU : F (U)→ G(U) is injective for all open sets U ⊂ X

• ϕx;Fx → Gx is injective for all x ∈ X

Similarly, ϕ : F → G ∈ mor(Sh(X)) is an epimorphism if and only if ϕx : Fx → Gx is surjective for all
x ∈ X.

However, epimorphisms don’t play as nicely with sections; ϕ : F → G being an epimorphism doesn’t
necessarily imply that ϕU : F (U)→ G(U) is surjective.

Now, we will return to talking about general abelian categories.

Last time, we mentioned that in an abelian category, for any morphism X → Y , we can extend this to

ker f −→ X −→ Y −→ coker f,

where the first part is a monomorphism and the second part is an epimorphism.

Definition 23.4. An abelian category also has the concept of an image, where

im f = coker(ker f −→ X) = ker(Y −→ coker f).

Definition 23.5. Then, we say that something of the form:

· · · X0 X1 X2 X3 X4 · · ·f0 f1 f2 f3

is a complex if for all i, fi+1 ◦ fi = 0, and it is exact if im fi = ker fi+1 for all i.
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Definition 23.6. If a sequence of the form

0 X Y Z 0

is exact, then it is called short exact.

Definition 23.7. If a sequence of the form

0 X Y Z

is exact, then it is called left exact.

Proposition 23.8. A sequence is left exact if and only if X = ker(Y → Z).

Definition 23.9. If a sequence of the form

X Y Z 0

is exact, then it is called right exact.

Proposition 23.10. A sequence is right exact if and only if Z = coker(X → Y ).

Proposition 23.11. A sequence is short exact if and only if it is left exact and right exact.

Proposition 23.12. We can split a long exact sequence into a bunch of short exact sequences, as follows:

0 0 0

ker f0 ker f3

· · · X1 X2 X3 · · ·

ker f1 ker f4

0 0 0

f2f1

and for every collection of short exact sequences

0 −→ coker fi−2 −→ Xi −→ ker fi+1 −→ 0,

we can combine them into a long exact sequence.

Proof. For the first part, we leave it as an exercise to check that ker fi = im fi−1 = coker fi−2 for all i.
We leave the second part as an exercise.

Between abelian categories, the only useful kind of functor is an additive functor. As a reminder, additive
functors preserve (0) and they preserve direct sums ⊕, but not in general kernels and cokernels.

We can give an example of this:
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Example 23.13. Consider the functor Ab→ Ab defined by G 7→ G⊗Z Z/(2).

The image of the short exact sequence

0 Z Z Z/(2) 0
×2

is the right exact sequence

Z/(2) Z/(2) Z/(2) 00

but the first map is no longer injective, so this functor does not preserve kernels.

Similarly, the image of the short exact sequence under the functor G 7→ HomZ(Z/(2), G) is the left exact
sequence

0 (0) (0) Z/(2)

but the second map is no longer surjective, so this functor does not preserve cokernels.

In a sense, homological algebra is entirely about understanding how additive functors interact with kernels
and cokernels.

We have special words for the functors that do preserve these:

Definition 23.14. An additive (covariant) functor F is left exact if it preserves kernels.

Note that this is equivalent to F preserving left-exact sequences.

Definition 23.15. An additive (covariant) functor F is right exact if it preserves cokernels.

Note that this is equivalent to F preserving right-exact sequences.

Definition 23.16. An additive (covariant) functor F is exact if it preserves kernels and cokernels.

Note that this is equivalent to F preserving short exact sequences, which is equivalent to F preserving exact
sequences.

It should be clear that if F preserves kernels and cokernels, then it preserves images, so it preserves exact
sequences (and therefore short exact sequences). However, it is harder than one might think to show that if
F preserves short exact sequences, then it preserves kernels and cokernels:

Lemma 23.17. If an additive (covariant) functor F preserves short exact sequences, then it preserves
kernels and cokernels.

Proof. We have the sequences

0 0

im f

X Y

ker f coker f

0 0

f
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Applying F , we have the sequences

0 0

F (im f)

FX FY

F (ker f) F (coker f)

0 0

Ff

which are still short exact.

We want to show that F (ker f) = kerFf . We can see that F (ker f) = ker(FX → F (im f)) from exactness
of this sequence. What we want to show is that for any other Z such that

Z FX FY
Ff

0

commutes, Z factors uniquely through F (ker f). But if we add in the F (im f) part of the sequence, and note
that F (im f)→ FY is a monomorphism, the diagram

F (im f)

Z FX FY
Ff

0

must commute, and then using the fact that F (ker f) = ker(FX → F (im f)), we get that these maps must
factor uniquely through F (ker f), so

F (ker f) = ker(Ff)

as we desired.

The proof that F (coker f) = coker(Ff) is similar, so we leave it as an exercise.

We have similar definitions for contravariant functors:

Definition 23.18. A contravariant additive functor F : C → D is:

• left exact if F op : Cop → D is left exact.

• right exact if F op : Cop → D is right exact.

• exact if F op : Cop → D is exact.

Thus, for example, F is left exact if and only if for all right exact sequences X → Y → Z → 0 in C, the
image

0 −→ FZ −→ FY −→ FX

is left exact. So F is named after the sequences in the target.
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Proposition 23.19. Similarly to before, F is left exact if and only if it takes cokernels to kernels, and
F is right exact if and only if it takes kernels to cokernels.

Let’s look at some examples of such functors.

Example 23.20. In the category R-Mod:

• the functor M 7→ D−1M is exact (we showed this in a homework problem)

• the functor M 7→M ⊗N , for a fixed N , is right exact (but not necessarily left exact)

• the functor M 7→ HomR(N,M) is left exact (but not necessarily right exact)

• the functor M 7→ HomR(M,N) is left exact (but not necessarily right exact)

The functor Sh(X)→ Ab defined by F 7→ F (X) is left exact but not in general right exact (because of
Proposition 23.3).

The functor Γ-Mod→ Ab defined by M 7→MΓ, where

MΓ = {m ∈M | γm = m for all γ ∈ Γ} ,

is left exact but not in general right exact.

But in some special cases, any additive functor will preserve exactness!

Lemma 23.21. If
0 −→M −→ N −→ FR(X) −→ 0

is a short exact sequence of R-modules and F : R-Mod→ D is additive, then

0 −→ FM −→ FN −→ F (FR(X)) −→ 0

is again exact.

Proof. We have the short exact sequence

0 M N FR(X) 0
f g

But we can construct a “section” s : FR(X)→ N , which is a one-sided inverse to g, so that g ◦ s = idFR(X)

but s ◦ g is not necessarily the identity.

Specifically, for any basis element ex, we define s(ex) to be any preimage of ex, and we know this uniquely
defines an R-linear map FR(X)→ N .

Then, we have that N ∼=M ⊕ FR(X) via the maps

f(m) + s(p)←− [ (m, p)

n 7−→ (f−1(n− s(g(n))), g(n)),

and we leave it as an exercise to see that these are inverses.

Then, we know we have the standard exact sequence

0 −→ FM −→ FM ⊕ F (FR(X)) −→ F (FR(X)) −→ 0

via the projection and inclusion maps. But since F preserves direct sums, this induces the exact sequence

0 −→ FM −→ FN −→ F (FR(X)) −→ 0,

as we desired.
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The important part in this proof was not really that FR(X) was free, but that we were able to create this
section s. Thus, we can generalize our above strategy to any abelian category:

Definition 23.22. We say that P ∈ ob(C) is projective if for any

P

X Y

there exists a morphism P → X that makes the diagram

P

X Y

commute.

Example 23.23. In the category C = R-Mod, any free module is projective.

Definition 23.24. We say that I ∈ ob(C) is injective if for any

I

X Y

there exists a morphism Y → I that makes the diagram

I

X Y

commute.

Lemma 23.25. If 0→ X → Y → Z → 0 is exact in C and F : C → D is additive, then if X is injective
or Z is projective, the image

0 −→ DX −→ DY −→ DZ −→ 0

is exact in D.

Definition 23.26. We say that C has enough projectives if for any X ∈ ob(C), there exists an epi-
morphism P → X, where P is projective.

We say that C has enough injectives if for any X ∈ ob(C), there exists a monomorphism X → I, where
I is injective.

Proposition 23.27. If C has enough projectives, then for any X, we can construct the exact sequence

· · · −→ P−2 −→ P−1 −→ P 0 −→ X −→ 0,
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where each P i is projective. We call this the projective resolution of X.

If C has enough injectives, then for any X, we can construct the exact sequence

0 −→ X −→ I0 −→ I1 −→ I2 −→ · · · ,

where each Ii is injective. We call this the injective resolution of X.

The main idea of homological algebra is that we can replace X with these resolutions to get nicer properties.
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Lecture 24: Projectives and Injectives

First, as a note, there was an error in the initial definition of an additive category - we need to additionally
assume that in every HomC(X,X) there exists a − idX function such that − idX + idX = 0, in order to be
able to show that the homomorphisms actually form an abelian group. (This is now fixed in the notes for
the additive categories lecture.)

Last lecture, we left off defining projectives, injectives, and what it means to have enough projectives or
enough injectives.

Example 24.1. R-Mod and Γ-Mod have enough projectives and enough injectives.

Sh(X) has enough injectives, but it doesn’t usually have enough projectives.

Definition 24.2. We say that an R-module P is finitely presented if there exists some finite a, b such
that we have the right exact sequence

R⊕b −→ R⊕a −→ P −→ 0.

Note that this is a stronger condition than just being finitely generated.

Example 24.3. When P is finitely generated over a noetherian ring, it is finitely presented.

Lemma 24.4. Suppose that P is an R-module. Then, the following are equivalent:

1. P is projective

2. There exists a set Ω and an R-module Q such that P ⊕Q ∼= FR(Ω) (so it is a summand of a free
module).

Moreover, if P is finitely presented, these are also equivalent to:

3. P℘ is free over R℘ for all ℘�R prime.

4. Pm is free over Rm for all m�R maximal.

Proof. We will first show 1 =⇒ 2:

Recall that since P is projective, there is a morphism s : P → FR(P ) that makes the diagram

P

FR(P ) P

s

commute, so π ◦ s = idP .

This implies that FR(P ) ∼= kerπ ⊕ P , via the isomorphisms

a+ s(b)←− [ (a, b)
c 7−→ (c− s(π(c)), π(c))

We leave it as an exercise to check that these are really inverses.
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Now we will show that 2 =⇒ 1:

We have P ⊕Q ∼= FR(Ω), and we want to show that for any X,Y such that we have the diagram

P

X Y

there exists some s : P → X that makes the diagram commute. But we know there exists some α that makes
the diagram

FR(Ω)

P

X Y

π

α

commute, since all free modules are projective, and then we can just take s = α ◦ ι, where ι is the inclusion
map P → P ⊕Q.
Now, we will show that if P is finitely presented, then 1 and 2 imply 3:

Let Ω be a finite set that generates P . We know that there is a projection map FR(Ω) ↠ P , and then using
the same argument as 1 =⇒ 2, we are able to say P ⊕Q = FR(Ω), for some finite Ω.

Then, localizing at ℘, we get that
FR℘

(Ω) ∼= P℘ ⊕Q℘
as R℘-modules.

Then, taking everything mod ℘, we get that

FR℘/℘(Ω)
∼= P℘/℘P℘ ⊕Q℘/℘Q℘.

But R℘/℘ is a field, so this is now an equivalence in terms of vector spaces. That means we can find a basis
{e1, . . . , ea} of P℘/℘P℘ and a basis {ea+1, . . . , en} of Q℘/℘Q℘.

Then, Nakayama’s lemma tells us that if we take {e1, . . . , ea} such that ei/℘P℘ = ei for each i, this forms a
generating set for P℘ as an R℘-module. So we have the surjection

R⊕a℘ ↠ P℘

and we similarly get the surjection
R⊕n−a ↠ Q℘.

Combining these, we get that
R⊕b ↠ P℘ ⊕Q℘ = FR℘

(Ω).

We can represent this surjection with some n×n matrix A. But we can see that A mod p is an isomorphism,
so detA /∈ ℘, and since ℘ is the unique maximal ideal of R℘, detA must be a unit in R℘.

Thus, A is invertible, which means this surjection is invertible; specifically, this implies that

R⊕a℘ ↠ P℘

is also injective and therefore must also be an isomorphis, as we desired.
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Then, 3 =⇒ 4 is clear, so we will skip this and show that 4 =⇒ 1.

We want to show that for any M,N such that we have the diagram

P

M N

we can find a map P →M that makes the diagram commute.

This is equivalent to showing that HomR(P,M) → HomR(P,N) is surjective; we have the right exact
sequence

HomR(P,M) −→ HomR(P,N) −→ Q −→ 0

and we want to show that Q = 0.

To do so, we can localize at a maximal ideal m to get the right exact sequence

HomR(P,M)m −→ HomR(P,N)m −→ Qm −→ 0.

Claim. The above sequence is equal to the right exact sequence

HomRm
(Pm,Mm) −→ HomRm

(Pm, Nm) −→ Qm −→ 0.

We will assume this claim is true for now; then we can see that since Pm is free, HomRm
(Pm,Mm) must

surject onto HomRm
(Pm, Nm), so Qm is 0, which means Q = 0, as we desired.

To prove the claim in the middle, we have the following sub-lemma:

Lemma 24.5. If M,N are R-modules with M finitely presented and D ⊂ R multiplicative, then

D−1 HomR(M,N) ∼= HomD−1R(D
−1M,D−1N).

Proof. We don’t have time to fully prove this, but the idea is that:

We first prove the case where M is a finite free module, so we can write M ∼= R⊕a,

and then we use the right exact sequence R⊕b → R⊕a → M → 0, and note that this induces a left exact
sequence

0 −→ Hom(M,N) −→ Hom(R⊕a, N) −→ Hom(R⊕b, N).

If we apply the D−1 before the homomorphism operator, then we get the sequence

HomD−1R(D
−1M,D−1N) −→ HomD−1R(D

−1R⊕a, D−1N) −→ HomD−1R(D
−1R⊕b, D−1N),

while if we apply the D−1 after the homomorphism operator, we get

D−1 HomR(M,N) −→ D−1 HomR(R
⊕a, N) −→ D−1 HomR(R

⊕b, N).

It is possible to show that this implies the isomorphism we want.

Now, we will move on to proving a few facts about injectives.

Definition 24.6. We say that a Z-module M is divisible if for all m ∈M and all a ∈ Z̸=0, there exists
some m′ ∈M such that am′ = m.
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Example 24.7. Q and Q/Z are examples of divisible Z-modules.

Lemma 24.8. A Z-module I is injective if and only if it is divisible.

Proof. If I is injective, then for any such m, a, we can consider the maps

I

Z Z

17→m

n 7→an

and we know there exists a map

I

Z Z

17→m

n 7→an

17→m′

that makes the diagram commute. But we can see that moving from Z to I in one direction will give us
1 7→ m and moving from Z to I in the other direction will give us 1 7→ am′. Thus, we must have

am′ = m,

as we desired.

If I is divisible, then we want to show that for any X,Y such that we have this diagram:

I

X Y

α

there is a map Y → I such that the diagram commutes.

We will do so by essentially granularly extending the map α.

Consider the set
X =

{
(Z, β)

∣∣ X ⊆ Z ⊆ Y submodules, β : Z −→ I, β|X = α
}
.

That is, we consider the set of all morphisms β : Z → I that extend α. We can apply a partial ordering to
this set, by saying

(Z, β) ≥ (Z ′, β′) if Z ⊇ Z ′ and β|Z′ = β′.

We can see that this is a nonempty set, because (X,α) is an element of the set, and we can see that for any
chain C ⊂ X , we have an upper bound (W,γ) defined by

W =
⋃

(Z,β)∈C

Z ⊂ Y,

and since for any w ∈W , w ∈ Z for some (Z, β) ∈ C, we can define γ(w) = β(w).

Thus, every chain has an upper bound, so we can apply Zorn’s lemma to get a maximum (Z, β) of this set.

If Z = Y then we have won.

We will assume Z ̸= Y and arrive at a contradiction. Specifically, choose some y ∈ Y −Z, and then consider
the ideal

J = {n | ny ∈ Z}� Z.
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Since Z is a PID, we can write J = (a), and then we know there exists some m = β(ay), and some m′ ∈ I
such that am′ = m. Then, we can consider the morphism

β′ : ⟨Z, y⟩ −→ I

defined by
z + ny 7→ β(z) + nm′.

We leave it as an exercise to check that this is a well-defined morphism. Then, we see that (⟨Z, y⟩, β′) ∈ X ,
contradicting the maximality of (Z, β).

Thus, Z = Y , and we have the extension we wanted.

Corollary 24.9. If I is an injective Z-module and M ⊂ I is a submodule then I/M is injective.

This is because divisibility of I is preserved under quotients.

Corollary 24.10. Z-mod has enough injectives.

Proof. For every Z-module M , we can construct the exact sequence sequence

0 −→ K −→ FZ(M) −→M −→ 0,

which means M ∼= FZ(M)/K. But FZ(M)/K ⊂ FQ(M)/K, which is divisible and therefore injective. Thus,
M is contained in an injective, as we wanted.

Lemma 24.11.

1. If I is an injective Z-module then HomZ(R, I) (which is an R-module when R acts via (af)(b) =
f(ab)) is an injective R-module.

2. Then, for any R, R-Mod has enough injectives.

We will not prove this formally, but the idea is that HomZ(R, I) is right adjoint to the forgetful functor, and
right adjoints preserve injectives. Then, for the second part, we know there exists some injective I such that
M ↪→ I as Z-modules, and then M ↪→ HomZ(R, I) as R-modules.

119



Math 210a Aditi Talati Fall 2022

Lecture 25: Maps Between Complexes

Definition 25.1. If we have the complexes

· · · −→ Ci−1 −→ Ci −→ Ci+1 −→ · · ·

and
· · · −→ Di−1 −→ Di −→ Di+1 −→ · · ·

then we say that a chain map or map of complexes f• : I• → J• is a collection of maps

· · · Ci−1 Ci Ci+1 · · ·

· · · Di−1 Di Di+1 · · ·

fi−1 fi fi+1

Definition 25.2. If f•, g• : C• → D• are maps of complexes, we say that they are homotopic if there
exist maps ki : Ci+1 → Di with

f i − gi = ∂i−1D ◦ ki−1 + ki ◦ ∂iC .

This gives us the commutative diagram

· · · Ci−1 Ci Ci+1 · · ·

· · · Di−1 Di Di+1 · · ·

∂i−1
C ∂i

C

∂i−1
D ∂i

D

fi−1−gi−1 fi−gi fi+1−gi+1
kiki−1

If two maps of complexes are homotopic, we denote this f• ∼= g•.

Lemma 25.3. Suppose C is an abelian category with enough injectives. If f : X → Y is a morphism in
C and X and Y have the injective resolutions

0 X I0 I1 · · ·

0 Y J0 J1 · · ·

then there exists a chain map f• : I• → J•, and f• is unique up to homotopy.

Proof. We can prove the existence of f• inductively. First, we can see that we have the maps

0 X I0 · · ·

0 Y J0 · · ·

f

120



Math 210a Aditi Talati Fall 2022

and since J0 is injective, this induces a map f0 : I0 → J0, so that we get this diagram:

0 X I0 · · ·

0 Y J0 · · ·

f f0

Then, we will show that if we have the maps f i−1 and f i, we can construct f i+1. We have maps of the form

coker ∂i−1I

· · · Ii−1 Ii Ii+1 · · ·

· · · J i−1 J i J i+1 · · ·

∂i−1
I

fifi−1

Since this diagram commutes, we can see that Ii−1 → Ii → J i → J i+1 is the same as Ii−1 → J i−1 →
J i → J i+1. But since this complex is exact, we know that J i−1 → J i → J i+1 is just the zero map, so
Ii−1 → Ii → J i is also the zero map, and the universal property of the quotient gives us an induced map
coker ∂i−1I → J i+1 Then, since J i+1 is injective, we get our desired f i+1, so we have the map

coker ∂i−1I

· · · Ii−1 Ii Ii+1 · · ·

· · · J i−1 J i J i+1 · · ·

∂i−1
I

fifi−1 fi+1

and thus, inductively, we get the map of complexes f•.

Now, we need to show that f• is unique up to homotopy. Specifically, if we have two such chain maps f•, g•,
we will show via induction that they are homotopic. Subtracting these two gives us the complex starting
with

0 X I0 · · ·

0 Y J0 · · ·

0 f0−g0

But then, we we did before, we note that X → I0 → J0 = X → Y → J0 = 0, so the universal property of
the quotient gives us an induced map I0/X → J0, and then since J0 is injective, this gives us an induced
map k0 : I1 → J0 that makes the diagram commute:

0 X I0 I0/X I1 · · ·

0 Y J0 · · ·

0 f0−g0
k0

∂0
I

and f0 − g0 = k0 ◦ ∂0I , as we desired.

For the inductive step, if we already have

· · · Ii−1 Ii Ii+1 · · ·

· · · J i−1 J i J i+1 · · ·

fi−1−gi−1

∂i−1
I

∂i−1
J

fi−giki−1
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then we can consider the map f i − gi − ∂i−1J ◦ ki−1 : Ii → J i. Following the commutative diagram above,
we can see that (f i − gi) ◦ ∂i−1I = ∂i−1J ◦ (f i−1 − gi−1). Thus,(

f i − gi − ∂i−1J ◦ ki−1
)
◦ ∂i−1I = ∂i−1J ◦

(
f i−1 − gi−1 − ki−1 ◦ ∂i−1I

)
.

But our inductive assumption says that f i−1 − gi−1 = ki−1 ◦ ∂i−1I + ∂i−2J ◦ ki−2. So(
f i − gi − ∂i−1J ◦ ki−1

)
◦ ∂i−1I = ∂i−1J ◦ ∂i−2J ◦ ki−2 = 0

by exactness of this sequence. Now, as before, we can apply the universal property of the quotient and then
use injectivity to get the induced maps

Ii coker ∂i−1I Ii+1

J i

(fi−gi)−∂i−1
J ◦ki−1

ki

∂i
I

and thus f i − gi − ∂i−1I ◦ ki−1 = ki−1 ◦ ∂iI , as we desired.
Thus, by induction, f• and g• are homotopic.

Corollary 25.4. If we have two distinct injective resolutions 0 → X → I• and 0 → X → J•, then
there exists f• : I• → J• extending idX which is unique up to homotopy, and there exists g• : J• → I•

extending idX which is unique up to homotopy.

Note that this implies g• ◦ f• is a chain map I• → I• extending idX , and g• ◦ f• ∼= idI• . Similarly,
f• → g• ∼= idJ• .

Definition 25.5. We say that two injective resolutions I• and J• are homotopic if there exists f• :
I• → J• and g• : J•toI• such that f• ◦ g• ∼= idJ• and g• ◦ f• ∼= idI• .

Definition 25.6. Suppose C• is a chain complex. We say that the ith cohomology of C• is

Hi(C•) = ker ∂iC/ im ∂i−1C .

Example 25.7. Consider an injective resolution

0 −→ X −→ I0 −→ I1 −→ · · ·

Then, H0(I•) = X, and for all i ≥ 1, Hi(I•) = 0, since I is exact.

Remark 25.8. If f• : C• → D• is a map of complexes, then we get the induced maps

Hi(f•) : Hi(C•) −→ Hi(D•).

This is because we know the diagram

· · · Ci−1 Ci Ci+1 · · ·

· · · Di−1 Di Di+1 · · ·

fi−1 fi fi+1

∂i
C∂i−1

C

∂i−1
D

∂i
D

commutes, so f i maps im ∂i−1C to im ∂i−1D and it maps ker ∂iC to ker ∂iD. Thus, we can construct an induced
map Hi(C•)→ Hi(D•), as we desired.
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Lemma 25.9. If f•, g• : C• → D• are homotopic, then for each i,

Hi(f•) = Hi(g•).

We will just show this for chain complexes in R-Mod. Consider any x ∈ ker ∂iC . We want to show that
Hi(f)(x) − Hi(g)(x) = 0 ∈ Hi(D•), or f i(x) − gi(x) ∈ im ∂i−1D . But we can see that since f• and g• are
homotopic,

f i(x)− gi(x) = ∂i−1D ◦ ki−1(x) + ki ◦ ∂iC(x)
= ∂i−1D (ki−1(x)) + 0,

which is clearly in im ∂i−1D , as we wanted.
Thus, cohomology is invariant under homotopy.

Example 25.10. Say we have abelian categories C,D, where C has enough injectives, and we have the
left-exact additive functor F : C → D.

Then, for any X ∈ ob(C), we have an injective resolution 0 → X → I•, and FI• is a complex in D
(though not necessarily exact).

We say that the ith right derived functor of F is

RiF (X) = Hi(FI•).

We must check that:

(a) RiF (X) is well-defined on objects X.

If we had two different injective resolutions of X, then they would be homotopic, so we’d have the
maps

0 X I•

0 X J•

idX f•g•

such that f• ◦ g• ∼= idJ• and g• ◦ f• ∼= idI• .

Remember that if FI• and FJ• were homotopic, then Hi(FI•) = Hi(FJ•). So what’s left is to
prove that F preserves homotopies. That is, we want to show that we have the diagram

FI•

FJ•

Ff•Fg•

such that Ff• ◦ Fg• ∼= idFJ• and Fg• ◦ Ff• = idFI• .

Indeed, we can see that if
f i − gi = ∂i−1J ◦ ki−1 + ki ◦ ∂iI

then since F is additive,

F (f i)− F (gi) = F (∂i−1J ) ◦ F (ki−1) + F (ki) ◦ F (∂iI)
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and therefore Ff• ∼= Fg•, as we desired.

Thus, RiF (X) is well-defined.

(b) RiF is well-defined on morphisms f : X → Y .

If I• is our injective resolution of X and J• is our injective resolution of Y , but we have two chain
maps f•, g• : I• → J• extending f :

0 X I•

0 Y J•

g•f•f

then as we showed above, since f• ∼= g•, Ff• ∼= Fg•, so Hi(Ff•) = Hi(Fg•), and RiF (f) is
well-defined.

(c) RiF : C → D is additive.

This is easy to check.

(d) R0F = F .

We can consider the start of the injective resolution

0 −→ X −→ I0 −→ I1.

This is a left-exact sequence, and since F is left-exact, the image is also a left-exact sequence

0 −→ FX −→ FI0 −→ FI1,

and therefore H0(FI•) = FX.

(e) If I is injective and i > 0 then RiF (I) = 0.

Example 25.11. If X is a topological space, then

Γ :Sh(X) −→ Ab

F 7→ F (X)

is the global section functor. Since Γ is left-exact and Sh(X) has enough injectives, this has the right
derived functors

RiΓ : Sh(X) −→ Ab.

Theorem 25.12. Suppose X is a second countable topological space where every point has an open
neighborhood homeomorphic to an open set in Rn (so it is a manifold). Then, for all i,

RiΓ(ZX) ∼= Hi
ring(X,Z),

where ZX is the constant sheaf mapping each U ⊆ X to Z.
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Lecture 26: Sequences of Complexes

Proposition 26.1. Suppose C has enough injectives and

0 −→ X −→ Y −→ Z −→ 0

is short exact. Then, there exist injective resolutions 0→ X → I•, 0→ Y → K•, and 0→ Z → J• such
that there is a commutative diagram

0 0 0

0 X Y Z 0

0 I0 K0 J0 0

0 I1 K1 J1 0

...
...

...

0 Ii Ki J i 0

...
...

...

with exact rows.
More specifically, for any injective resolutions 0 → X → I•, 0 → Z → J•, there exists an injective
resolution 0→ Y → K• that makes the statement true.

Proof. Let’s say we have injective resolutions 0→ X → I•, 0→ Z → J•. We claim that the K• that makes
this diagram commute is Ki = Ii ⊕ J i.

We can see that each Ki is injective because it is the direct sum of two injectives.

Then, we first need to find a map J → I0 ⊕ J0 that makes the diagram

0 0 0

0 X Y Z 0

0 I0 I0 ⊕ J0 J0 0

f g

∂0
I ∂0

J

commute.

I missed the part of lecture where we construct this part of the map, so I’ll fill this in later, but if you have
notes for this, please let me know!
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Afterwards, we need to inductively find a map Ii ⊕ J i → Ii+1 ⊕ J i+1 such that the diagram

0 Ii Ii ⊕ J i J i 0

0 Ii+1 Ii+1 ⊕ J i+1 J i+1 0

∂i+1
I ∂i+1

J

commutes. But we can see that for the square on the right to commute, we need this map to be something
of the form

(x, y) 7→ (,∂
i+1
J y)

and then for the square on the left to commute, we need this map to be something of the form

(x, y) 7→ (∂i+1
I x+ hi+1y, ∂i+1

J y),

where hi+1 is some map J i → Ii+1.

So we have found maps between each of these exact sequences that preserve commutativity, but we still have
freedom over what our hi’s are. This is good, because we still need to ensure that

0 −→ Y −→ I0 ⊕ J0 −→ I1 ⊕ J1 −→ · · ·

is actually an injective resolution.

Since we already said each term in this sequence is an injective, it is sufficient to pick our hi’s such that this
becomes an exact sequence.

We can first see that, in order for this to be a complex, we need to pick our hi’s such that the composition
of any two maps is zero. We will leave the case of the Y → I0⊕ J0 → I1⊕ J1 map as an exercise, and focus
on the maps beyond that.

We can see that the composition of any two maps is then

(x, y) 7→ (∂iIx+ hiy, ∂iJy) 7→ (∂i+1
I hiy + hi+1∂iJy, 0).

Thus, for this to be a complex, we will pick our hi’s such that

∂i+1
I hiy + hi+1∂iJy = 0.

But this also makes this an exact sequence! We can see that if (x, y) ∈ Ii⊕J i maps to 0 ∈ Ii+1⊕J i+1, then

∂i+1
J y = 0,

and since J• is an injective resolution, this implies there exists y′ ∈ J i−1 such that ∂iJy
′ = y. Similarly, we

know
∂iIx+ hiy = 0,

or
∂iIx+ hi∂i−1J y′ = 0,

but then by the definition of hi we just chose, hi∂i−1J = −∂iIhi−1, so

∂iI(x− hi−1y′) = 0,

and then by exactness of I•, we get that there exists some x′ such that

(x, y) = (∂i−1I x′ + hi−1y′, ∂i−1J y′),

as we desired.
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But does there actually exist an hi that satisfies this definition?

It turns out there does; we can construct it inductively using the same sort construction we used repeatedly
last lecture:

J i−2

J i−1

coker ∂i−1J

Ii+1 J i

−∂i+1
I ◦hi

induces a map

J i−2

J i−1

coker ∂i−1J

Ii+1 J i

−∂i+1
I ◦hi

which induces a map

J i−2

J i−1

coker ∂i−1J

Ii+1 J i

−∂i+1
I ◦hi

as we desired.

Ok, now let’s say we have an exact sequence

0 −→ X −→ Y −→ Z −→ 0,

and then we apply our injective resolution to get the diagram

0 0 0

0 X Y Z 0

0 I• K• J• 0

Then, if we have an additive functor F , we can apply it to this diagram to get

0 −→ FI• −→ FK• −→ FJ• −→ 0.

Here, the columns are still complexes, but they no longer have to be exact. However, the rows are exact,
because additive functors preserve short exact sequences when the first term is an injective.
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Lemma 26.2. Suppose C•, D•, E• are complexes that fit the commutative diagram

0 −→ C• −→ D• −→ E• −→ 0,

with exact rows.
Then, there is a long exact sequence

· · · −→ Hi(C•) −→ Hi(D•) −→ Hi(E•) −→ Hi+1(C•) −→ Hi+1(D•) −→ · · · .

It should be somewhat clear that Hi(C•)→ Hi(D•)→ Hi(E•) is exact; the unusual part is the Hi(E•)→
Hi+1(C•) map, which we call a boundary map.

Corollary 26.3. If F : C → D is left exact and C has enough injectives, and if 0→ X → Y → Z → 0 is
exact in C, then

0 −→ R0FX −→ R0FY −→ R0FZ −→ R1FX −→ R1FY −→ · · ·

is long exact.

Proof of lemma. We will first show exactness at Hi(D). We have the diagram

...
...

...

0 Ci−1 Di−1 Ei−1 0

0 Ci Di Ei 0

0 Ci+1 Di+1 Ei+1 0

...
...

...

Then, for any d+ im ∂i−1D ∈ Hi(D•) such that gi(d) = ∂i−1E (e), we want d+ im ∂i−1D to equal f i(c) for some
c ∈ ker ∂iC .

Indeed, we can see that since our rows are exact, there must be some d′ ∈ Di−1 such that

∂i−1E (e) = ∂i−1E (gi−1(d′)) = gi(∂i−1D (d′)).

But this means that gi(d− ∂i−1D d′) = 0, so by exactness of the rows, there must exist some c ∈ Ci such that

d− ∂i−1D d′ = f i(c).

Now, we want to show that c ∈ ker ∂iC . Indeed, we can see that

f i+1(∂iC(c)) = ∂iD(f
i(c)) = ∂iD(d)− ∂iD(∂i−1D (d′)) = 0,

since d ∈ ker ∂iD. But since f i+1 is injective, f i+1(∂iC(c)) = 0 implies that ∂iC(c) = 0, so this sequence is
exact at Hi(D•), as we desired.

Showing exactness at Hi(C•) and Hi(E•) is harder, because we need to define the boundary maps. We will
do this at the start of next lecture.

128



Math 210a Aditi Talati Fall 2022

Lecture 27: Sequences of Complexes, II

We begin by continuing our proof from last lecture.

Proof, cont’d. Last time, we showed that our induced sequence was exact at Hi(D•). We will now define
our boundary map Hi(E•)→ Hi+1(C•) so that we can show exactness at Hi(E•) and Hi(C•).

We will focus on this part of the commutative diagram:

Di−1 Ei−1

0 Ci Di Ei 0

0 Ci+1 Di+1 Ei+1 0

0 Ci+2 Di+2

∂i−1
D

fi gi

∂i−1
E

fi+1 gi+1

fi+2

∂i
C

∂i+1
C

∂i
D

∂i+1
D

∂i
E

gi−1

where we note that the rows are exact but the columns are (not necessarily exact) complexes.

Consider an arbitrary element in Hi(E•). That is, consider some e + im ∂i−1E , where e ∈ ker ∂iE . Then,
since gi is surjective, there exists some d ∈ Di such that gid = e. Moreover, we can see that since this is a
commutative, diagram,

gi+1∂iDd = ∂iEg
id = ∂iEe = 0.

So ∂iDd ∈ ker gi+1 = im f i+1, so there exists some c ∈ Ci+1 such that f i+1c = ∂iDd. We want c to be an
element of ker ∂i+1

C . Indeed, we can see that

f i+2∂i+1
C c = ∂i+1

D f i+1c = ∂i+1
D ∂iDd = 0,

and since f i+2 is injective, this implies ∂i+1
C c = 0, as we desired.

Thus, our boundary map is the function e+ im ∂i−1E 7→ c+ im ∂iC .

We need to first check that this is well defined.

Consider some
e′ + im ∂i−1E = e+ im ∂i−1E .

This implies that e′ − e ∈ im ∂i−1E , so there exists some e′′ ∈ Ei−1 such that e′ − e = ∂i−1E e′′.

Then, by surjectivity of gi and gi−1, we know there exist d, d′, d′′ such that:

gid = e

gid′ = e′

gi−1d′′ = e′′.
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As before, we note that ∂iDd, ∂
i
Dd
′ ∈ ker gi+1 = im f i+1, so there exists c, c′ ∈ Ci+1 such that f i+1c = d,

f i+1c′ = d′. We can show, moreover, that c, c′ ∈ ker ∂i+1
C .

Then, c + im ∂iC is the image of e + im ∂i−1E and c′ + im ∂iC is the image of e′ + im ∂i−1E . Thus, we want to
show that these are equal; that is, c′ − c ∈ im ∂iC .

But we can see that, indeed,
e′ − e = ∂i−1E gi−1d′′ = gi∂i−1D d′′.

This implies that
gi(d′ − d− ∂i−1D d′′) = e′ − e− (e′ − e) = 0,

so this is in ker gi = im f i, and there exists some c′′ such that f ic′′ = d′ − d− ∂i−1D d′′. This implies that

f i+1∂iCc
′′ = ∂iDf

ic′′ = ∂iDd
′ − ∂iDd− ∂iD∂i−1D d′′ = f i+1c′ − f i+1c.

But since f i+1 is injective, this implies that

c′ − c = ∂iCc
′′,

so c′ − c ∈ im ∂iC , and this boundary map is well-defined, as we desired.

Now that we have a well-defined boundary map, we can show that this map is exact at Hi(E•).

First, we will show that
Hi(D•) −→ Hi(E•) −→ Hi+1(C•)

is the zero map. We can see that, for any d ∈ ker ∂iD, we map d + im ∂i−1D to gi(d) + im ∂i−1E . Then, the
boundary map takes gi(d) + im ∂i−1E , maps this back to d, and then maps this to some c+ im ∂iC ∈ Hi(C•)
such that f i+1c = ∂iDd. But since d ∈ ker ∂iD, this implies f i+1c = 0, and since f i+1 is injective, this implies
c = 0, as we desired.

Then, we will show that this is exact. Consider any e+ im ∂i−1E which maps to 0 ∈ Hi+1(C•). We want this
to be the image of an element of Hi(D•). By our definition of the boundary map, this means there exists
some d ∈ Di such that gid = e, and then some c ∈ im ∂iC such that f i+1c = ∂iDd. But this means that there
exists c′ ∈ Ci such that ∂iCc

′ = c, and then we can see that

∂iD(d− f ic′) = ∂iDd− f i+1c = 0,

so d− f ic′ ∈ ker ∂iD, and this is an element of Hi(D•) whose image under gi is e+ im ∂i−1E .

Showing that this sequence is also exact at Hi(C•) is a very similar process, so we will leave this as an
exercise.

(Note that the everything we are proving about sequences of complexes also holds in general abelian cat-
egories, but we are just proving them for R-modules because it is a lot easier notationally to describe
morphisms of R-modules.)

Lemma 27.1. Suppose we have a commutative diagram of complexes:

0 C• D• E• 0

0 C ′• D′• E′• 0

f• g• h•
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where the rows are exact. Then, we get a commutative diagram

· · · Hi(C•) Hi(D•) Hi(E•) Hi+1(C•) · · ·

· · · Hi(C ′•) Hi(D′•) Hi(E′•) Hi+1(C ′•) · · ·

Hi(f•) Hi(g•) Hi(h•) Hi+1(f•)

where the rows are still exact.

The proof of this lemma is very similar to the previous lemma; we will skip it in the interest of time. The
fact that the square

Hi(C•) Hi(D•) Hi(E•)

Hi(C ′•) Hi(D′•) Hi(E′•)

Hi(f•) Hi(g•) Hi(h•)

commutes should just follow from definitions, so the difficult part is just showing commutativity with the
boundary maps.

Lemma 27.2. Suppose we have abelian categories C,D, and a left exact additive functor F : C → D.
Suppose moreover that C has enough injectives. Then, if

0 X Y Z 0

0 X ′ Y ′ Z ′ 0

f g h

is a commutative diagram in C with exact rows, then

0 R0FX R0FY R0FZ R1FX · · ·

0 R0FX ′ R0FY ′ R0FZ ′ R1FX ′ · · ·

R0Ff R0Fg R0Fh R1Ff

also commutes.

Proof sketch. Recall that RiFX is the ith right derived functor of F , and it equals Hi(FI•), where I• is an
injective resolution of X.

Recall that Proposition 26.1 gives us a commutative diagram of injective resolutions

0 X Y Z 0

0 I• I• ⊕ J• J• 0

with exact rows. Then,
0 −→ FI• −→ FI• ⊕ FJ• −→ J• −→ 0

is still an exact sequence, since additive functors preserve exact sequences that start with injectives. We
similarly construct

0 −→ I ′• −→ I ′• ⊕ J ′• −→ J ′• −→ 0

and the induced exact sequence

0 −→ FI ′• −→ FI ′• ⊕ FJ ′• −→ FJ ′• −→ 0.
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Then, the map f : X → X ′ induces a map f• : I• → I ′•, and the map h : Z → Z ′ induces a map
h• : J• → J ′•. Thus, we have the diagram

0 I• I• ⊕ J• J• 0

0 I ′• I ′• ⊕ J ′• J ′• 0

f•
h•

What remains is to define a map I• ⊕ J• → I ′• ⊕ J ′• which makes the diagram commute; from there, we
can apply the previous lemma to get our desired result.

A lot of our work so far has been in terms of turning these short exact sequences of complexes into long
exact sequences of objects: we will generalize this now.

Definition 27.3. If C and D are abelian categories, then a δ-functor (delta-functor) C → Di s a
sequence of functors S0, S1, . . . : C → D such that:

1. For each short exact sequence
0 −→ X −→ Y −→ Z −→ 0

in C, there exist morphisms δi : SiZ → Si+1X such that

0 S0X S0Y S0Z S1X · · ·δ0

is long exact.

2. For any commutative diagram

0 X Y Z 0

0 X ′ Y ′ Z ′ 0

f g h

with exact rows, the diagram

SiZ Si+1X

SiZ ′ Si+1X
δi

δi

Sih Si+1f

commutes.

(This property is known as functoriality.)

Definition 27.4. We say that a δ functor is a universal δ-functor if for any other delta functor {T}
and natural transformation ϕ0 : S0 → T 0, there exist unique natural transformations ϕi : Si → T i for
all i, such that for any short exact sequence

0 −→ X −→ Y −→ Z −→ 0
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in C, the diagram

SiZ Si+1X

T iZ T i+1X
δiT

δiS

ϕi
Z ϕi

X

commutes.
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Lecture 28: Right Derived Functors

We left off last lecture defining universal δ-functors. We have the following lemma:

Lemma 28.1. For any left-exact additive functor F ,
{
RiF

}
is a universal δ-functor.

Proof. We have some other δ-functor {Si} and a natural transformation ϕ0 : R0F = F → S0.

We want to inductively create each ϕi, prove that it is a natural transformation, and show that it is com-
patible with boundary maps.

Recall that a natural transformation is a morphism ϕiX : RiFX → SiX, for each X ∈ ob(C). Let’s consider
an arbitrary such X. We know that there exists an exact sequence

0 −→ X −→ I −→ Q −→ 0,

where I is injective, and Q is the cokernel of the map X → I.

Then, by our inductive hypothesis, we have natural transformations ϕi−1I and ϕi−1Q which make the diagram

Ri−1FI Ri−1FQ

Si−1I Si−1Q

ϕi−1
I ϕi−1

Q

commute.

Then, we define ϕiX to be the induced map that makes the diagram

Ri−1FI Ri−1FQ Ri−1FX

Si−1I Si−1Q SiX

ϕi−1
I ϕi−1

Q
ϕi
X

commute; since Ri−1FQ → RiFX is surjective, the existence of ϕiX follows from the universal property of
the quotient.

Now, we need to show that this ϕiX is independent of our choice of I, is a natural transformation, and it is
compatible with the general boundary map.

Let’s say we have some morphism f : X → Y ; this induces the diagram

0 X I Q 0

0 Y J Q′ 0

f g h

where I and J are injectives. Here, we know there exists an induced g since I is injective, and then there
exists an induced h by universal property of the quotient.
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Then, to show the naturality of ϕi, we can start with the diagram

Ri−1FQ Ri−1FQ′

Si−1Q Si−1Q′
Si−1h

Ri−1Fh

ϕi−1
Q

ϕi−1

Q′

Then, we note that since these are both δ-functors, we can add in the δ maps induced from the short exact
sequence to get

RiFX RiFY

Ri−1FQ Ri−1FQ′

Si−1Q Si−1Q′

SiX SiY

Si−1h

Ri−1Fh

ϕi−1
Q

ϕi−1

Q′

Sif

RiFf

Then, by the way we defined the ϕiX ’s, we know they commute with the δ maps, so we get the diagram

RiFX RiFY

Ri−1FQ Ri−1FQ′

Si−1Q Si−1Q′

SiX SiY

Si−1h

Ri−1Fh

ϕi−1
Q

ϕi−1

Q′

Sif

RiFf

ϕi
X,I ϕi

Y,J

where the outer square show that ϕi is a natural transformation. Moreover, we can see that by taking Y = X
and f = idX , we have shown that ϕiX is independent of our choice of I.

Finally, we need to show that ϕi commutes with boundary maps. As before, we can extend any short exact
sequence to

0 X Y Z 0

0 X I Q 0

where the X → X map is just the identity, the Y → I map is induced by the fact that I is an injective, and
the Z → Q map is induced by the universal property of the quotient.
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Again, we will start with the commutative diagram

Ri−1FQ RiFX

Si−1Q SiX

ϕi−1
Q

ϕi
X

and then extend it into

Ri−1FZ RiFX

Ri−1FQ RiFX

Si−1Q SiX

Si−1Z SiX

ϕi−1
Q

ϕi
Xϕi−1

Z

id

id

ϕi
X

where the green arrows follow from naturality of the ϕi’s, and the purple arrows follow from the fact that
these are δ-functors. We leave the details of the diagram chasing as an exercise.

Thus, we have inductively shown that ϕi has all our desired properties, so RiF is a universal δ-functor.

Definition 28.2. We say that X ∈ ob(C) is acyclic if RiFX = 0 for all i > 0.

Example 28.3. All injectives are acyclic.

(I’m missing a lemma about acyclics here because I’m not entirely sure what the statement of the lemma is,
and I don’t want to include incorrect information)

Definition 28.4. Recall that in any abelian category C, the functor

HomC(X,−) : C −→ Ab

is a covariant left-exact functor.

If C has enough injectives, we say that Ext
i

C(X,−) is the δ-functor

Ext
i

C(X,−) = RiHomC(X,−) : C −→ Ab.

Similarly, in any abelian category C, the functor

HomC(−, Y ) : C −→ Ab

is a contravariant left exact functor, and if C has enough projectives, we define ExtiC(−, Y ) to be

ExtiC(−, Y ) = RiHomC(−, Y ) : C −→ Ab.

136



Math 210a Aditi Talati Fall 2022

Thus, we can apply Ext to a short exact sequence

0 −→ Y1 −→ Y2 −→ Y3 −→ 0

to get a long exact sequence

0 −→ Hom(X,Y1) −→ Hom(X,Y2) −→ Hom(X,Y3) −→ Ext
1
(X,Y1) −→ Ext

1
(X,Y2) −→ · · ·

and we can apply Ext to a short exact sequence

0 −→ X1 −→ X2 −→ X3 −→ 0

to get a long exact sequence

0 −→ Hom(X3, Y ) −→ Hom(X2Y ) −→ Hom(X1, Y ) −→ Ext1(X3, Y ) −→ · · ·

Theorem 28.5. If C has enough injectives and enough projectives, then

ExtiC(X,Y ) ∼= Ext
i

C(X,Y ).

Lemma 28.6. The following are equivalent:

1. X is a projective

2. for all Y , Exti(X,Y ) = 0 for all i > 0

3. for all Y , Ext1(X,Y ) = 0

Proof. We will first show that 1 =⇒ 2.

Recall that Exti(−, Y ) = RiHom(−, Y ). Moreover, we can see that since X is projective,

· · · −→ 0 −→ 0 −→ X −→ X −→ 0

is a projective resolution of X. But then, applying our homomorphism functor gives us

Hom(X,Y ) −→ Hom(0, Y ) −→ Hom(0, Y ) −→ · · · ,

and then we can see that Exti(X,Y ) is Hi of this complex, which is 0 for all i > 0.

It is obvious that 2 =⇒ 3.

Finally, we will show that 3 =⇒ 1.

We have some X such that (3) holds. Then, consider the exact sequence

0 −→ K −→ P −→ X −→ 0,

where P is a projective. This induces the long exact sequence

0 −→ Hom(X,K) −→ Hom(P,K) −→ Hom(K,K) −→ Ext1(X,K) −→ · · ·

However, note that Ext1(X,K) = 0, so Hom(P,K) surjects onto Hom(K,K). Specifically, we can find some
f ∈ Hom(P,K) which maps onto idK ∈ Hom(K,K), so our short exact sequence splits as

0 K P X 0
f

and then P ∼= K ⊕ ker f , which implies ker f ∼= X, and since X is a direct summand of a projective, it must
also be a projective.
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Lecture 29: Ext Functors

Last time, we defined the functors Ext and Ext, and we had a lemma about projectives and Ext. We will
now prove a similar lemma about injectives and Ext.

Lemma 29.1. The following are equivalent:

1. Y is injective

2. for all X, Exti(X,Y ) = 0 for all i > 0

3. for all X, Ext1(X,Y ) = 0

Proof. We will first prove that 1 =⇒ 2.

First, note that for any X, we can construct a short exact sequence

0 −→ K −→ P −→ X −→ 0,

where P is projective. Then, the induced long exact sequence is

0 −→ Hom(X,Y ) −→ Hom(P, Y ) −→ Hom(K,Y ) −→ Ext1(X,Y ) −→ · · ·

However, since Y is an injective, and K → P is injective, we know any morphism K → Y must factor
through P , and therefore Hom(P, Y ) → Hom(K,Y ) is surjective. This implies that the rest of this long
exact sequence must be zeroes, and in particular, Exti(X,Y ) = 0 for all i.

It is clear that 2 =⇒ 3.

We will now show that 3 =⇒ 1.

Consider any injective map A→ B. This implies that there is a short exact sequence

0 −→ A −→ B −→ Q −→ 0,

which induces a long exact sequence that starts with

0 −→ Hom(Q,Y ) −→ Hom(B, Y ) −→ Hom(A, Y ) −→ Ext1(Q,Y ) = 0

which implies that Hom(B, Y ) → Hom(A, Y ) is surjective, so any map A → Y factors through B, and
therefore Y is injective.

Lemma 29.2. We defined Exti(X,Y ) as a functor of X, but it is also a δ functor when considered as a
function of Y .

Proof. To prove this, we need to show that for any map f : Y1 → Y2, there exists a corresponding natural
transformation Exti(−, Y1)→ Exti(−, Y2).

We start with i = 0; in this case we want a map Hom(−, Y1) → Hom(−, Y2). In this case, we can just
take the natural transformation ϕX : g 7→ f ◦ g. As we have shown before, this is a natural transformation
between homomorphism functors.

But then, since Exti(−, Y1) is a universal δ-functor and Exti(−, Y2) is a δ-functor, we know that this induces
a unique collection of natural transformations

ϕi : Exti(−, Y1) −→ Exti(−, Y2)
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which is compatible with the boundary maps.

Thus, we have found our induced morphisms, so we have shown Exti(X,−) fulfills the second part of Defi-
nition 27.3.

We leave it as an exercise to finish the proof that Exti(X,−) is a δ-functor.

Lemma 29.3. For any category C which has enough injectives, and for any X ∈ C, there exists a natural
isomorphism

Ext
i
(X,−) −̃→ Exti(X,−).

Proof. We can see that when i = 0, we need a map Hom(X,−) → Hom(X,−), and we can just use the
identity map here.

Then, since Ext
i
(X,−) is a universal δ-functor and Exti(X,−) is a δ-functor, the definition of a universal

δ-functor tells us we can uniquely extend the natural transformation above into a collection of natural
transformations

Ext
i
(X,−) −→ Exti(X,−)

which commutes with the boundary maps.

Then, we need to show that this is an isomorphism for each i. We can show this inductively; note that since
C has enough injectives, for any Y ∈ ob(C) we can produce the short exact sequence

0 −→ Y −→ I −→ Q −→ 0,

where I is an injective.

Then, we induce the long exact sequence

· · · Ext
i−1

(X,Q) Ext
i
(X,Y ) Ext

i
(X, I) · · ·

· · · Exti−1(X,Q) Exti(X,Y ) Exti(X, I) · · ·

By our inductive assumption, the green map on the left is an isomorphism, and since I is injective,

Ext
i
(X, I) = Exti(X, I) = 0, so the green map on the right is an isomorphism of 0 modules, and via

diagram chasing, this implies the purple map must be an isomorphism, as we desired.

Let’s look at some examples of Ext.

Example 29.4. We will work in the category Z-mod.

1. Since Z is projective, Ext0(Z, A) = A and Exti(Z, A) = 0 for all i > 0.

2. What is Exti(Z/nZ, A)?

We have the exact sequence

0 Z Z Z/nZ 0
×n

and by looking at the induced long exact sequence, and using the fact that Exti(Z, A) = 0 for all
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i > 0, we get that

Ext0(Z/nZ, A) = Hom(Z/nZ, A)
Ext1(Z/nZ, A) = A/nA

Exti(Z/nZ, A) = 0 when i > 1.

Exercise 29.5. As a challenge, compute Exti(Q,Z) for all i.

We now switch to talking about the Tor functor.

Definition 29.6. Consider the map

M ⊗− : R-Mod −→ R-Mod

N 7−→M ⊗N.

This is a covariant and right-exact functor.

Since R-Mod has enough projectives, we can define the Tor functor to be the δ-functors:

TorRi (M,−) : R-Mod −→ R-Mod

N 7→ Li(M ⊗R N),

where Li is the left-derived functor.

This is a universal δ-functor.

This means that given any short-exact sequence

0 −→ N1 −→ N2 −→ N3 −→ 0

we induce the long-exact sequence

· · · −→ TorR1 (M,N2) −→ TorR1 (M,N3) −→M ⊗N1 −→M ⊗N2 −→M ⊗N3 −→ 0.

Definition 29.7. We say that M is a flat module if M ⊗R − is an exact functor.
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Lecture 30: Tor Functors

At the end of last lecture, we defined the Tor δ-functor. (Note that I have added in this definition at the end
of last lecture, but I didn’t have it there before.)

We have a very similar lemma to what we proved for Ext:

Lemma 30.1. The following are equivalent:

1. N is a flat module.

2. For all M , Tori(N,M) = 0 for all i > 0.

3. For all M , Tor1(N,M) = 0.

Based on the above lemma, we can also prove the following:

Lemma 30.2.

1. M1 ⊕M2 is flat if and only if M1 and M2 are flat.

2. All free modules are flat.

3. All projective modules are flat.

Lemma 30.3. If
0 −→M1 −→M2 −→M3 −→ 0

is exact, then

· · · −→ Tor1(M2, N) −→ Tor1(M3, N) −→M1 ⊗N −→M2 ⊗N −→M3 ⊗N −→ 0

is long exact.

Proof. Consider the projective resolution P • → N → 0. Then, we know that the induced sequence

0 −→M1 ⊗ P • −→M2 ⊗ P • −→M3 ⊗ P • −→ 0

has exact rows. This implies a long-exact sequence in the cohomology, which implies there is a long exact
sequence of our left-derived functors, which are exactly the Tor functors.

Now, we can consider the Tor functor on the first coordinate, and we get similar results.

Lemma 30.4. The following are equivalent:

1. N is a flat module.

2. For all M , Tori(M,N) = 0 for all i > 0.

3. For all M , Tor1(M,N) = 0.

Proof. We will first show that 1 =⇒ 2.

We proceed via induction on i. First, given an M , we know there exists an exact sequence

0 −→ K −→ P −→M −→ 0,
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where P is a projective, and K is the kernel of P → M . At a base case, when i = 1, we are looking at the
exact sequence

· · · −→ Tor1(P,N) −→ Tor1(M,N) −→ K ⊗N −→ P ⊗N −→ · · ·

But Tor1(P,N) = 0 since P is projective and therefore flat. This means Tor1(M,N) → K ⊗ N must be
injective. But since N is flat, we know that − ⊗ N preserves exact sequences, so K ⊗ N → P ⊗ N is an
injective map. For this sequence to be exact, we then need Tor1(M,N) = 0. For the inductive case, we are
looking at the exact sequence

· · · −→ Tori(P,N) −→ Tori(M,N) −→ Tori−1(K,N) −→ · · ·

and we can see that because P is projective, Tori(P,N) = 0 and by the inductive hypothesis Tori−1(K,N) =
0, so for this sequence ot be exact, we need Tori(M,N) to be 0 as well.

It is clear that 2 =⇒ 3.

To show that 3 =⇒ 1, we will look at an arbitrary exact sequence

0 −→M1 −→M2 −→M3 −→ 0.

Then, we know that the induced long exact sequence is

· · · −→ Tor1(M3, N) −→M1 ⊗N −→M2 ⊗N −→M3 ⊗N −→ 0.

But Tor1(M3, N) = 0, so
0 −→M1 ⊗N −→M2 ⊗N −→M3 ⊗N −→ 0

is short exact, as we desired!

As we might expect, Tor is a δ-functor in the first variable as well:

Proposition 30.5.

1. M 7→ Tori(M,N) is a δ-functor.

2. For all M,N , Tori(M,N) ∼= Tori(N,M).

The proofs of these were covered in class but I am very tired and these are very similar to the corresponding
proofs for Ext, so I am leaving these as an exercise.

Remark 30.6. The functor Tori(−,M) is the left-derived functor of −⊗RM .

Let’s try to understand flatness better. The following lemma essentially tells us that flatness is a local
property:

Lemma 30.7. The following are equivalent:

1. M is flat over R

2. M℘ is flat over R℘, for any prime ideal ℘�R.

3. Mm is flat over Rm, for any maximal ideal m�R.

Proof. First, we will show that 1 =⇒ 2:

For any short exact sequence
0 −→ N1 −→ N2 −→ N3 −→ 0,
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where each Ni is an R℘-module, we note that since M is flat,

0 −→M ⊗R N1 −→M ⊗R N2 −→M ⊗R N3 −→ 0

is short exact. But then we can see that for each Ni,

M ⊗R Ni ∼=M ⊗R (R℘ ⊗R℘ Ni)
∼= (M ⊗R R℘)⊗R℘ Ni

∼=M℘ ⊗R℘ Ni,

so this gives us an exact sequence over R℘, and M℘ is flat over R℘, as we desired.

It is clear that 2 =⇒ 3.

We now show that 3 =⇒ 1.

Consider any short exact sequence

0 −→ N1 −→ N2 −→ N3 −→ 0

of R-modules. Then, we know that since Mm is flat,

0 −→Mm ⊗Rm
N1m −→Mm ⊗Rm

N2m −→Mm ⊗Rm
N3m −→ 0

is short exact. Moreover, since M ⊗R − is always a right-exact functor, we know that there is an induced
exact sequence

0 −→ K −→M ⊗R N1 −→M ⊗R N2 −→M ⊗R N3 −→ 0,

for some kernel K. But localizing this at m should preserve exactness, so Km = 0 for all m (to match the
above short exact sequence). But this means that K = 0, and we get our desired short exact sequence, and
M is flat over R.

Definition 30.8. A local ring is one with a unique maximal ideal.

Lemma 30.9. If R is a Noetherian local ring and M is a finitely-generated R-module, then M is free
over R if and only if it is flat over R.

Definition 30.10. Showing that free implies flat is easy.

For the other direction, consider the unique maximal ideal m. We know thatM/mM is finitely generated
over R/m, which is a field, and therefore it must have a basis over this field. Thus, we can write

M/mM ∼= (R/m)⊕d,

where d is the degree of M/mM .

Then, Nakayama’s lemma tells us that R⊕d →M is a surjection, so we have the exact sequence

0 −→ K −→ R⊕d −→M −→ 0.

Then, we can consider the functor R/m⊗R−. We can apply the induced Tor functor to this short exact
sequence to get the long exact sequence

· · · −→ TorR1 (R/m,M) −→ K/m −→ (R/m)⊕d −→M/mM −→ 0.

But since M is flat, TorR1 (R/m,M) = 0, so K/m = ker
(
(R/m)⊕d →M/mM

)
. But we know that this
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is an isomorphism, so the kernel is 0, and K/m = 0. Since K is finitely generated over R (since R is
Noetherian), Nakayama’s lemma tells us this implies K = 0, and therefore M ∼= R⊕d.

Now, let’s look at some examples of torsion functors.

Example 30.11. What is TorZi
(
Z/(n),Z/(m)

)
?

Well, we can consider the short exact sequence

0 Z Z Z/(m) 0
×m

We can see that tensoring this with Z/(n) gives us the short exact sequence

0 Z/(n) Z/(n) Z/(m,n) 0
×m

and if we look at the left derived functors of this, we get that

TorZi
(
Z/(n),Z/(m)

)
=

{
Z/(m,n) if i = 0, 1

(0) otherwise.

For example, consider the short exact sequence

0 Z/2 Z/4 Z/2 0
×2

Tensoring this with Z/2 gives us the induced torsion sequence

0 −→ Tor1(Z/2,Z/2) −→ Tor1(Z/2,Z/4) −→ Tor1(Z/2,Z/2) −→ Z/2 −→ Z/2 −→ Z/2 −→ 0,

which is just the long exact sequence

0 Z/2 Z/2 Z/2 Z/2 Z/2 Z/2 0∼ 0 ∼ ×2 ∼
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Appendix A: Tensor Products Review

I’m collecting some information about tensor products here, because I keep getting lost looking for the rele-
vant information in the actual notes.

First, we have a tensor product of rings:

Definition A.1. If R,S, T are rings, and ϕ : R → S and ψ : S → T are ring morphisms, then the
tensor product S ⊗R T is defined as

R[Xs, Yt]s∈S,t∈T /I,

where I is the ideal

I =

Xs1+s2 −Xs1 −Xs2 , Yt1+t2 − Yt1 − Yt2 ,
Xs1s2 −Xs1Xs2 , Yt1t2 − Yt1 − Yt2 ,

Xϕ(r) − r, Yψ(r) − r


s1,s2∈S,t1,t2∈T,r∈R

.

The tensor product of rings has the following universal property:

Lemma A.2. For any ring morphisms S → U and T → U such that the diagram

R T

S

U

ϕ

ψ

commutes, there exists a unique ring morphism α : S ⊗R T → U such that the diagram

R T

S S ⊗R T

U

ϕ

ψ

α

commutes.

We have a few useful lemmas about tensor products of rings, starting with Lemma 7.12.

Then, we have the tensor product of a ring and a module:

Definition A.3. If R and S are rings, M is an R-module, and ϕ : R→ S is a ring morphism, then the
tensor product S ⊗RM is defined as

FS(M)/N,

where N is the submodule

N = ⟨en + em − em+n, erm − ϕ(r)em⟩r∈R,m,n∈M .

This has the universal property:
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Lemma A.4. For any S-module P and R-linear map f :M → P (where R acts on P by r · p = ϕ(r)p),
there is a unique S-linear map f̃ : S ⊗RM → P such that the diagram

M P

S ⊗RM

f

f̃

commutes and f̃(s⊗m) = sf(m).

We have a few useful lemmas about tensor products of a ring and a module, starting with Lemma 16.2.

Note that the above two tensor products are equivalent, in the sense that:

Lemma A.5. If R,S, T are rings and we have ring morphisms ϕ : R→ S, ψ : R→ T , then we have the
ring tensor product S ⊗R T .

But we can also consider T as an R-module, via the action r · t = ψ(r)t, and then get the ring-module
tensor product S ⊗R T .

These two are isomorphic as S-modules.

Finally, we have the tensor product of multiple modules:

Definition A.6. If M1, . . . ,Ma are R-modules, then the tensor product over R M1 ⊗ · · · ⊗Ma is
defined as

FR(M1 × · · · ×Ma)/N,

where we are taking the free module generated by the set-theoretic product M1 × · · · ×Ma, and then
quotienting out by the submodule

N = ⟨e(m1,...,mi+rm′
i,...,ma) − e(m1,...,ma) − re(m1,...,m′

i,...,ma)⟩mj∈Mj ,m′
i∈Mi,r∈R.

This has the following universal property:

Lemma A.7. For any R-module P and multilinear map ψ :M1 × · · · ×Ma → P , there exists a unique
R-linear map ψ̃ :M1 ⊗ · · · ⊗Ma → P such that the diagram

M1 × · · · ×Ma P

M1 ⊗ · · · ⊗Ma

ψ

ψ̃

commutes.

We have a few useful lemmas about the tensor products of modules, starting with Proposition 18.2.

This is also equivalent to the previous tensor products, in the sense that:

Lemma A.8. If R and S are rings, with a ring morphism ϕ : R → S, and we have an R-module M ,
then we have the ring-module tensor product S ⊗RM , which turns M into an S-module.

But we can also consider S as an R-module, with the action r · s = ϕ(r)s, and then S ⊗R M is the
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R-module induced by the set product S ×M .

These two tensor products are isomorphic as R-modules.
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