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1 Introduction

Implicit models are a new way of thinking about neural net-
works where the data, rather than the programmer, dictates
depth of the network. Traditional techniques in deep learning
define the output of a layer as an explicit function of the input
and stack these layers for depth. In contrast, implicit layers
specify constraints that the output should satisfy, rather than
providing an exact sequence of computation to compute the
output.

Deep Equilibrium Models (DEQs), introduced in a paper by
Bai, Kolter, and Koltun [1], are a specific class of implicit
models that have been shown to use much less memory than
classic models, as well as match or improve performance.
Theoretically, any deep network can be represented as just
a single layer or "cell" in a DEQ model with the same num-
ber of parameters, and a single DEQ layer can model any
number of stacked DEQ layers. Thus, DEQs have much
better memory-efficiency than traditional neural networks.
Although there are still issues with the slower run-time, DEQ
models present a unique approach to sequence modeling that
enables for better representation and optimization.

This model has often been experimented and compared on
medium to large scale tasks involving Penn Treebank and
Wiki-Text103 corpus where its memory advantages shine,
but not on the smaller sequential tasks that are within the
computational limits of this project. As a result, we explore
the performance of DEQs on a smaller task: learning nested
arithmetic operations. We then compare the performance
of a fully-connected neural network, GRU neural network,
repeated GRU neural network, and a DEQ to predict the sign
of output of an arithmetic expression.

Our goal is to understand how the DEQ compares with the
other classical models when comes to this smaller but still
complex sequential task, and we will conduct experiments to
investigate interesting properties with the DEQ and whether
its adaptive depth helps with the complex sequential hierar-
chies in the task.

2 Related Work

Deep Equilibrium Models were originally proposed by Bai
et. al. [1] as a new approach to modeling sequential data, and
was tested on language modeling tasks. The authors found
that DEQs were able to achieve similar performance and
computation requirements as state-of-the-art models on the
same task, but vastly reduced memory usage, achieving up to
88% memory reduction. Bai et. al. [2] also introduced a new
class of implicit networks called multiscale deep equilibrium

models (MDEQs) for large-scale vision tasks including clas-
sification on the ImageNet dataset. Further work has been
done to improve and optimize DEQs. For example, a paper
by Bai et. al. [3] proposed the use of Jacobian regularization
to stabilize the learning of DEQs while adding minimal com-
putational cost, and a paper by Geng et. al. [4] introduces a
way to use a gradient estimate for implicit models, called a
phantom gradient, which accelerates the backward pass by
a factor of 1.7 and maintains similar or better performance
compared to state-of-the-art models.

Past studies have used both recurrent and non-recurrent mod-
els for learning hierarchical structures to evaluate nested
arithmetic expressions. Hupkes et. al. [5] investigates the
use of TreeRNNs, an artificial neural network which pro-
cesses data recursively given a syntactic structure, and RNNs
to compute the result of nested arithmetic expressions. The
authors found RNNs can learn to predict the outcomes of
these expressions, although the performance drops when in-
creasing the length of the expressions. Alternately, Grashoff
[6] uses the Transformer model for the same task, which, un-
like an RNN, uses the mechanism of self-attention to process
the data all at once rather than sequentially and recurrently.
This study finds that a transformer can evaluate arithmetic
expressions, and that the number of layers needs to increase
as the depth of the nested expression increases. Lample and
Charton [7] use a similar approach for symbolic expressions,
even learning integrals and differential equations better than
standard mathematical engines such as Matlab and Mathe-
matica. Tran et. al. [8] compares the architectures of RNNs
and Transformers to learn hierarchical structures and find that
although both perform similarly, the RNN obtained slightly
better accuracies and generalized better than the Transformer.
They conclude that processing data sequentially and recur-
rently is essential for modeling hierarchical structure.

3 Dataset and Features

Our dataset included 50000 training, 5000 testing, and 5000
validation examples of nested arithmetic expressions of
length 31. Each symbol in these expressions is either one
of the digits 1, . . . , 9 (where 0 is excluded to prevent invalid
expressions dividing by 0), an open or close parenthesis, or
one of the arithmetic operations +, −, ∗, and /. The task is
a binary classification task to predict whether the result of
evaluating the arithmetic expression is positive or negative.
The motivation behind choosing this task is that nested arith-
metic expressions have hierarchical structure, so we can test
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whether DEQs can learn this structure and generalize well
with its "infinite depth".

We generated the data by randomly forming combinations
of digits, operators, and parentheses, eliminating any invalid
expressions, and computing the sign of the result of each ex-
pression using the numerical expression evaluator numexpr.
Some examples of the generated data are shown in Figure 1.
We note that the data is approximately 66% positive exam-
ples. We then used a one-hot embedding for each symbol.
For different experiments, we also generated longer expres-
sions and biased expressions, where the − symbol is more
likely to appear than the other operators.

Expression Sign
(6 + (7 + 4− 9)/6 ∗ 1 + 4− 9/6/3 ∗ 3 + 6/4 ∗ 3) +

(((((5− 6 + (1 + 1/5)))))/(((3 ∗ 9)))) +

(7− 1 ∗ 8 ∗ 9 ∗ 2 ∗ 1− 5 + 5− 7− (((2− 7− 7)))) −
(7 + 3− 7/7)− (((9− 4/9 ∗ 8))) ∗ ((8 ∗ 4)) −
((7 ∗ (6− 6 ∗ ((3 + 3 ∗ 5 + 9))))) + 1 + 9/7/3 −

Figure 1: Examples of generated expressions.

We also ran PCA for dimension reduction to 2 and 3 dimen-
sions. The results are shown in Figures 2 and 3 respectively,
where the different colors represent the labels of the exam-
ples. We can observe that there is a lot of noise and no
separation between positive and negative examples, which
shows that the data is quite complex and cannot be predicted
by simple GLMs.

Figure 2: PCA reduction to 2 dimensions

Figure 3: PCA reduction to 3 dimensions

4 Methods

4.1 Evaluation

Since this is a binary classification problem, the task is to
minimize the standard Binary Cross-Entropy loss function

LBCE(ŷ) =
1

N

N∑
i=1

yi · log(ŷi) + (1− yi) · log(1− ŷi),

where y is the vector of ground-truth labels, ŷ is the vector
of predictions, and N is the number of examples.

We applied the binary cross-entropy loss function with logits,
which meant that our loss function applied the sigmoid layer
to our final output before computing the loss; this helped
avoid a gradient explosion that would otherwise occur when
the log of our values got too small. However, this meant
that the output of our model was a raw output, that happened
before applying a sigmoid layer; thus, we manually applied
a sigmoid to our predictions when computing accuracies on
our test set.

To evaluate the models, we will use three metrics: accuracy,
precision, and recall. To calculate this, we will calculate
the true positives (TP), false positives (FP), true negatives
(TN), and false negatives(FN) in a confusion matrix. Then,
the metrics are defined by the equations

accuracy =
TP + TN

TP + FN + TN + FP
,

precision =
TP

TP + FP
,

recall =
TP

TP + FN
.

4.2 Baseline (Fully Connected Network)

As seen from the PCA, the data is too non-linear and com-
plex for traditional classifiers such as logistic regression and
SVMs. As a result, the first model we will be using is a
standard fully-connected neural network. This network is
composed with first a flattening layer (flattening each exam-
ple from sequence of vectors into one long vector), then 3
linear layers with a tanh activation in-between, and apply
tanh again to the output layer. Since we suspect this model
will under-fit the data, we did not add any regularization.

4.3 Gated Recurrent Unit (GRU) Neural Network

The GRU is a specific recurrent neural network (RNN) ar-
chitecture designed to address the problematic short term
memory of RNNs. According to the comparison in [9], it
is similar to the LSTM network and comparable in perfor-
mance, except it has a less complex structure since it has one
less gate, and is thus more computationally efficient. To un-
derstand the structure of this network, we will briefly recall
the mechanism of RNNs.

Let x = (x1, . . . , xT ) be a sequence of data (e.g. words in
a sentence). Then a simple RNN updates its hidden state as
follows:

ht = g(Wht−1 + Uxt),
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where g is usually some smooth function, W and U are
weight matrices, ht−1 is the previous hidden state, and xt is
the current vector in the sequence. In the example where x
represents a sentence, each hidden state would then represent
the information from all of the previous words processed,
and the next hidden state would be updated after seeing the
next word. This continues until the end of the sequence.

The GRU is fundamentally the same, but instead of a simple
function, it passes the hidden state and data through a spe-
cially designed gated unit that works to preserve long-term
memory and has better performance. A diagram of the cell
is shown in Figure 4.

Figure 4: A single Gated Recurrent Unit cell.

With each example being a sequence, the neural network
applies the GRU to each example, turning it into another
sequence with the length of its hidden layer. Then, it flattens
each example into regular vectors and apply a final linear
layer as the prediction. A diagram of the model architecture
is shown in Figure 5.

Figure 5: Model Architecture

4.4 Stacked GRU Neural Network

Since the differential equation solver, in essence, repeats our
function call multiple times, we also wanted to see how the
performance of the DEQ model compared to multiple layers
of the GRU neural network. Thus, we included a stacked
GRU neural network, where we called a 3-layer GRU. This
passed the output of our first GRU into two more GRU cells
before flattening the final output and adding a linear layer to
get our final one-dimensional prediction.

4.5 DEQ with GRU Cell

The design of the DEQ model is inspired by the observa-
tion that the layers of a deep weight-tied sequential model
converge to some fixed point [1]. Formally, for a deep weight-
tied model, the forward operation can be written as

z
[i+1]
1:T = f(z

[i]
1:T , x1:T ),

where i represents the index of layers, z[i]1:T is the hidden
sequence of length T at layer i, x1:T is the input vector, and
f is some function.

The DEQ then uses a root solver to solve for the fixed
point z∗ = f(z⋆, x), which corresponds to the output of
an "infinite-layer" network. Through implicit differentiation,
DEQ can back-propagate through "infinite-layers" using con-
stant memory.

To design a DEQ layer, we just need to find some f that
mimics the layer structure we want. For our task, we wanted
to mimic the structure of the GRU network, so we designed
the DEQ layer

f(z[i], x) = tanh(GRU(z[i]) + x),

where z[i] is the output at i-th layer, x is the initial input, and
GRU(·) is the GRU cell applied to every sequence in z[i].
Intuitively, the DEQ should then be equivalent to stacking
the GRU layers infinitely many times (with input injection
and tanh for stability). This should handle more complex
sequential structures than single layer GRU. We also initial-
ized z to be GRU(x) where x is the input sequence so that
the GRU sequence lengths line up. The full model then does
the following:

1. Initialize z0 = GRU(x)

2. Pass z0 to DEQ layer, which computes the "fixed
point" with Anderson Acceleration

3. Flatten and pass to linear layer for output.

For the math to work, the DEQ depends on the existence of
an stable fixed point, so f is usually a contraction. In this
case, however, we decided it would be interesting to see if
the DEQ would perform without there being a stable fixed
point.

4.6 Repeated GRU Neural Network

We also wanted to understand what the DEQ function was do-
ing when there were no fixed points to find, which we found
was the case in our experiments. A simplified model of a
differential equation solver (not the one we used, since our
DEQ model used Anderson acceleration) repeatedly applies
the function f until ||f(z)− z|| goes below a certain value.
Since our function does not reach a fixed point, this meant
it was being called until the Anderson acceleration solver
“gave up” which happened at a threshold of 50 iterations. So
we decided that a good model to compare our DEQ model
to would be one where we initially apply a GRU cell to our
input x to get z[0], and then applying the function

f(z[i], x) = tanh(GRU(z[i]) + x)

50 times; that is, we passed our input through the same GRU
cell 50 times. Afterwards, we flattened the output and applied
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a linear layer to get our final one-dimensional prediction, as
in the previous examples.

4.7 Anderson Acceleration

Implicit models rely heavily on methods to solve the fixed
point problem: given a function f , find a solution to f(x) =
x. Like Bai et. al. [1], we use Anderson acceleration as
introduced by Walker and Ni [10], which, given an initial
guess x0 and a positive integer m, computes a sequence of
iterates to find a fixed point, setting x1 = f(x0) and

xk+1 =

mk∑
i=0

(αk)if(xk−mk+i)

where mk = min{m, k}, and αk can be computed quickly
from the residuals gk = f(xk) − xk of previous iterates.
Unlike Newton’s method, which requires a potentially costly
exact computation of the derivative f ′ during each iteration,
Anderson’s method only requires one computation of f per
iteration, and no evaluation of its derivative. The implemen-
tation we use sets m = 6, and stops at 50 iterates or when
∥xk+1 − xk∥ < 10−3.

5 Results and Discussion

Our implementation included code from the papers [1], [2],
and [3]. For our hyper-parameters, we used batch size 64
and ran for 40 epochs. This seemed reasonable given the
amount of training data, and the models’ accuracies began
to plateau around epoch 40. We did a grid search for the
learning rate from [0.1, 0.01, 0.001] and the hidden size from
[50, 100, 200], and the combination of learning rate being 0.1
and hidden size of 50 yielded the highest accuracies.

To prevent exploding gradients, which is often an issue in
deep learning, we also use the method of gradient clipping,
which scales the parameters of the model so that they are
less than some constant c (we take c = 1 in this case). This
method simply maps a parameter g to g

∥g∥ · c if ∥g∥ > c.

After every epoch of training each model, we tested its accu-
racy on the validation data set, and we found that the accuracy
per epoch was what we expected - that the DEQ does better
than the one-layer and three-layer GRU at each iteration,
because of this extended power of the implicit layer.

Figure 6: Accuracy of GRU, stacked GRU, and DEQ over
40 epochs

Y However, none of these models seem to be able to reach
perfect accuracy - if we train them for long enough, all three
models reach around 90% accuracy. We can see that, more-
over, the baseline neural net is unable to get more than 66%
accuracy - because it doesn’t have enough computing power
to actually parse and understand the equations, it ends up
learning that guessing that every equation has a positive out-
put gives it 66% accuracy, and it isn’t able to do much better
than that.

Figure 7: Accuracy of GRU, stacked GRU, DEQ, and FC
NN over 80 epochs.

We also evaluated the performance of the single-layer GRU
and the DEQ on simplified sequences with only the oper-
ations +, and −. The test results are shown in Figure 8,
with the confusion matrices shown in Figure 5. We note that
around half (43/80 and 47/89 for the base model and DEQ,
respectively) of the false positives evaluated to 0, which
may have been caused by the task being binary classification
rather than regression (so it is likely harder for the model to
classify examples with results that are close to 0).

We can see that the performance between the two is compa-
rable, with the DEQ performing slightly better. We also test
the performance of these models on biased data where the
− operator is three times more likely to appear than the +
operator, and find that the DEQ generalized slightly better
than the base model.

Model Test data accuracy Biased data accuracy
One-layer GRU 96.0% 94.2%

DEQ 96.3% 94.7%

Figure 8: Results of testing models on test and biased data
with two operations.

Figure 9: Confusion matrices for two-operation data shows
comparable performance between the base model (GRU) and
the DEQ.
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Model Accuracy Precision Recall
FC NN 64.58 % 77.73 % 58.57 %

One-layer GRU 80.73 % 91.05 % 75.78 %
Stacked GRU 85.0 % 92.5 % 81.97 %

DEQ 87.62 % 92.72% 86.43 %
Repeated GRU 87.41 % 91.86 % 87.03 %

Figure 10: Models Metrics on Test Data

Model Accuracy Precision Recall
FC NN 62.13 % 70.26 % 16.64 %

One-layer GRU 75.00 % 83.67 % 56.63 %
Stacked GRU 82.50 % 85.02 % 72.49 %

DEQ 85.9 % 88.38 % 71.27 %
Repeated GRU 84.9 % 84.10 % 74.36 %

Figure 11: Results of testing models on test and biased data.

We then trained and ran tests on the four operation data, with
the results in Table 10. The interesting observation is that the
precision are similar among models, but recall has a more
significant difference. This means that there are a lot of false
negatives, and might be related to the two operation trend
earlier. Not surprisingly, the DEQ again out performs the rest
of the models (with its mimic repeated GRU closely behind).

In general, it seems like the DEQ model is able to generalize
better to new datasets. When testing on a biased dataset,
where the likelihood of − signs is more than in the original
test and training dataset (which in turn would increase the
likelihood of a negative output), we see that the DEQ model
trained for 40 epochs on the unbiased dataset is able to get up
to 85.9% accuracy on the biased dataset, while the one-layer
GRU only gets 75.9% accuracy and the three-layer GRU gets
82.5% accuracy. These results are shown in Figure 11.

What’s interesting is that if we check the output z of our
implicit layer in the DEQ, and then compute ||z − f(z)||,
we can check whether our implicit layer is actually reaching
a fixed point. Plotting this norm after every 100 batches of
training the DEQ gives us the graph in Figure 12.

Figure 12: Graph of ∥z − f(z)∥ over time

This makes it clear that we are not, in fact, reaching a fixed
point. It is interesting that the DEQ still performs well when
this is the case, since this means that when applying this new
type of model, we are not necessarily limited to contractive
maps that have some fixed point.

The question then becomes whether the additional power of
our DEQ comes solely from the repetition of our function f
within each iteration of the model. Table 10 seems to indicate
that this is the case, because we can see that the repeated
GRU is able to get similar results to the DEQ on our testing
data.

6 Conclusion and Future Work

In conclusion, we saw that RNNs, specifically GRU net-
works, can learn hierarchical structures in nested arithmetic
expressions quite well, especially when limiting these expres-
sions to addition and subtraction instead of all four operators.
We found that although the DEQ takes much more time to
train, it consistently outperforms and seems to generalize
better than a fully connected neural network, a single-layer
GRU, a three-layer GRU, and a repeated GRU despite not
finding a fixed point.

For future work, it is crucial to understand why the DEQ still
performs well when there is no fixed point—this will open
up exciting modeling potentials while opening up the black
box. We could try implementing further improvements to
the DEQ model to optimize time and memory usage, such as
calculating the phantom gradient in [4] as a gradient estimate
instead of the gradient estimate, and also apply Jacobian reg-
ularization as in [3]. The slow run time is definitely an issue
for wide implementations.

Another interesting direction to explore would be to adapt the
method of diagnostic classifiers used by Hupkes et. al. [5] to
DEQs. The idea is that if a neural network is keeping track
of or computing certain information at a given time, a simple
linear model should be able to easily predict this information
given the hidden state space of the model. The result can
then give us a better idea of what the model is conceptually
doing on the algorithmic level.
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