Preventing the Spread of Wind-Driven Wildfires
with Partially Observable Markov Decision
Processes

Kai Fronsdal

Department of Computer Science
Stanford University
kaif @stanford.edu

Abstract—With wildfires becoming more and more common in
the Western United States in recent, research into the prevention
and tracking of wildfires is increasingly important. Of particular
interest are wind-driven wildfires, in which unpredictable wind
conditions exacerbate the challenges that fire prevention and
suppression agencies already face. We extend previous methods
of tracking and fighting wildfires that model fires as partially
observable Markov decision processes (POMDPs) to the domain
of wind-driven wildfires. By comparing the performance of
several state-of-the-art online belief state POMDP solvers, we
propose multiple robust, reinforcement learning-based methods
for handling the uncertainty associated with wind-driven wild-
fires. All online methods that we test perform better than the
baseline policy of greedily suppressing wildfires in high-cost
areas. We also provide a runtime comparison for the approaches
that we tested, as efficiency is critical for real-time application
of the online algorithms that we adapted to the context of wind-
driven wildfires. All source code can be found in our wind-driven
wildfires repository.

Index Terms—wildfires, reinforcement learning, partially ob-
servable Markov decision processes, Markov decision processes,
Monte Carlo tree search, determinized sparse tree search

I. INTRODUCTION

With wildfires becoming more and more common in the
Western United States in recent, research into the prevention
and tracking of wind-driven wildfires is increasingly important.
In such events, high winds cause rapidly-spreading, unpre-
dictable fires such as the 2018 Woolsey Fire, which resulted
in the evacuation of 295,000 people and destroyed nearly 2,000
structures in southern California [1]. Prevention and mitigation
of wind-driven fires relies almost entirely on preventing the
fires from starting in the first place through fire bans during
extreme wind events and careful power line placement [2].
Once a wind-driven fire begins, it is of utmost importance
that extreme wind events can be tracked accurately in real
time [3].

We propose a novel methodology for tracking and fighting
wind-driven wildfires using techniques from online reinforce-
ment learning. Building on the methodology for modeling
wildfires using partially observable Markov decision processes
(POMDPs) presented by Diao et al. [4], we aim to provide
several robust methods for containing wind-driven wildfires.

Jake Hofgard
Department of Mathematics
Stanford University
whofgard @stanford.edu

Aditi Talati
Department of Computer Science
Stanford University
atalati @stanford.edu

All of our methods rely on online belief-state planning,
with the ultimate goal of providing wildland firefighters with
realtime tracking and planning capabilities during wind-driven
wildfires. In particular, we compare the performance of several
online algorithms for solving POMDPs, including Monte Carlo
tree search (MCTS) and determinized sparse tree search. For
each method, we gauge performance on wildfires of different
sizes, with different wind conditions, and with a variety of
different hyperparameters relevant to each algorithm.

II. RELATED WORK

Our research primarily builds on work done by Diao et
al. [4]. In their 2020 paper “Uncertainty Aware Wildfire
Management,” Diao et al. provide a foundation for modeling
wildfires as POMDPs and solving the resulting models using
online belief-state planning algorithms. We adapted the open-
source code developed by Diao et al. to the case of wind-
driven wildfires, as their work did not consider the impact
that shifting winds might have on wildfire spread during
wind-driven events. Our underlying model, presented below,
is therefore similar to that of Diao et al. in that we model
fire spread on a discretized grid, with each cell having a
fixed cost and fuel level. However, our model includes the
uncertainty associated with wind, including variable direction
and strength, that our belief-state planning must take into
account. Diao et al. compares one strategy — Monte Carlo
search trees coupled with a particle filter without rejection
— with standard firefighting strategy of targeting high cost
cells, concluding that online algorithms have the potential to
significantly outperform typical strategies for wildfires with
fixed wind [4]. By extending the work presented by Diao et al.
to the complicated realm of wind-driven wildfires, we aim to
provide more robust tools for tracking and containing wildfires
regardless of wind conditions.

Mern et al. also present a method for containing wildfires
using online methods for solving POMDPs in their paper
“Improved POMDP Tree Search Planning with Prioritized
Action Branching,” which utilizes MCTS with double pro-
gressive widening (as implemented in the POMDPs . j1solver
POMCPOW) [5]. Again, the work presented by Mern et al.

https://github.com/jakehofgard/wind_driven_fires
https://github.com/jakehofgard/wind_driven_fires

focuses on wildfires with fixed wind conditions, and the au-
thors further assume a Gaussian distribution to model beliefs,
allowing them to update beliefs via a Kalman filter rather than
with particle filtering. Additionally, Mern et al. modeled fire
containment rather than modeling the spread of a fire through
a potentially inhabited area.

Besides the two results mentioned above, the majority
of POMDP-related work relevant to wildfire planning and
prevention instead considers tracking wildfires with unmanned
aerial vehicles (UAV). For instance, Julian and Kochenderfer
combine a discretized grid model for wildfires (very similar
to that of Diao et al.) with a dynamics model for a UAV,
incentivizing close tracking of the boundary of a spreading
wildfire [6]. Fixed wind conditions were assumed, although
the authors did experiment with a set of different fixed
wind conditions. Similarly, Shobeiry et al. present a robust
method for tracking the spread of wildfires under variable
wind conditions with multiple UAVs [7]. Like Mern et al.,
Shobeiry et al. assume a Gaussian dynamics model for fire
spread, allowing for faster computation.

III. APPROACH
A. Simulation

Given a fixed number of resources (e.g., firefighters, equip-
ment, water pressure, and so on), we provide a method for
prioritizing areas for wildfire suppression during an extreme
wind event in which wind conditions change rapidly and fire
spreads quickly as a result. Each cell in the discretization
of the area accessible to the fire is associated with a cost
of either —10, —5, or —1, corresponding to developed land,
forested land, and open space, respectively. When a grid is
initialized in our simulator, approximately 20% of the cells
have of —10, 30% of the cells have a cost of —5, and the
remainder have a cost of —1, closely matching the proportions
of developed land, forested land, and other land in California
[4]. This modeling assumption ensures that successful policies
will prioritize structure protection and preservation, just as
wildland firefighters do [8].

Fig. 1. A randomly-initialized cost map, illustrating the dispersion of low,
medium, and high cost cells throughout the discretized world.

In our model, the probability that a wind-driven wildfire
spreads from one cell to a neighbor is governed by a generative
transition model, expanding on the work of Diao et al. [4],

that takes into account variable wind speed and the fuel-
level of each cell during an extreme wind event [3]. This
problem is best modeled as a POMDP because of the inherent
uncertainty involved in monitoring a large geographic area
during a wind-driven wildfire; drone and satellite surveillance
are often imperfect, so authorities that monitor wildfires cannot
always be certain of the perimeter of a fire [1].

B. POMDP Structure

Building upon the work of Diao et al. [4], we constructed a
wrapper around POMDPs. j1 called FirePOMDP [9]; open-
source code for the FirePOMDP class was released by Diao
et. al, and we heavily modified the code to accurately represent
wildfires with rapidly-shifting wind conditions. An instance
of the FirePOMDP class is initialized with a grid size
n, which corresponds to an n X n grid, and a probability
t that firefighting efforts are successful. Additionally, each
instance of the FirePOMDP class inherits POMDP structure
from POMDPS. jl1, of the form (S,A,O,T,R,0O,), and
our procedure for maintaining a distribution over beliefs is
described in Section D below.

In our experiments, we vary n = 4,6,8,10, and set ¢t =
0.8. We also assume that we can take firefighting actions at
[n/4] cells per timestep. Upon initialization, the FirePOMDP
then randomly initializes an n X n cost grid, according to the
probability specifications mentioned in the previous section.

Each state in the FirePOMDP has three attributes: an n xn
BitArray, where 1s indicate cells on fire and Os indicate cells
not on fire, a n x n “fuel levels” array, which indicates how
much fuel is left for the fire to burn through, and the wind,
which has a strength and direction. When the POMDP is
initialized, the fuel level for every cell is at 5 units, and
the wind strength and direction is randomly assigned, where
the wind is in one of 8 directions according to the cardinal
directions. Finally, in the initial state, a center cell is randomly
chosen to be the starting point of the fire, and then cells
with a Euclidean distance of at most 3 from the center each
independently have a 0.9 probability of also being on fire.
Both of these values are constants within the code which
can be modified. This is meant to more accurately simulate
the way fires begin and spread from a central inciting point,
improving upon the previous work which randomly initialized
fire throughout the grid [4]. The state space S consists of
possible combinations of burning cells, fuel levels, and wind
directions and strengths. Similarly, the observation space O
consists of all possible sets of BitArrays representing fire
configurations.

At each state, we receive negative reward corresponding to
the items that are on fire. Specifically, we have the reward

function .
r=> > bli] i, 4,

i=1 j=1

where b[¢,j] is 1 if a cell is burning and O otherwise, and
cli, 7] is the cost associated with that cell. Thus, we have zero
reward only at the terminal state where nothing is on fire, and

4k

a3
NE

2
5>

®

=]
2
=]
o]
pi

® ¥
3
3

e
[5)
v
=]
5]
| £

®

k25 IR diedied e
b il gl

>

®®

1]
5]
i
]
5}
B

@

®

Fig. 2. An 8 x 8 gridworld representation of a random initial state. Houses
represent cells with high costs and tree represent cells with medium costs. Fire
represent cells that are on fire. The blue arrow corresponds with the current
wind direction.

otherwise we have negative reward, which is made worse by
more cells being on fire or developed land being on fire.

At each timestep, the action is a list of |n/4] indices,
corresponding to the cells where the agent tried to fight the
fire. The action space A consists of all such actions for all
possible fire configurations.

From this construction, our transition model 7" works as
follows:

« First, we decrement the fuel level of every cell which is
currently on fire.

o Then, at each cell where the firefighting action is applied,
if there is a fire, we successfully put it out with probability
t.

o We consider all neighbors of cells which are currently on
fire, in all 8 cardinal directions, and spread fire to this
neighbor with some probability. Formally, we write that
the probability of a fire spreading from ¢ to j, where ¢ is
on fire and j is a neighbor of 4, is P;; = 1 —exp(—swf),
where s is the strength of the current wind, w is 1 if cell
j is in the direction of the wind from cell 7, 0.5 if cell j is
near the direction of the wind (e.g. cell j is northeast from
cell 7, but the wind is pointing north), and 0 otherwise.
Finally, f is the percentage of fuel left on cell 7.

o The wind direction and strength are also modified ran-
domly, to a neighboring direction and strength.

« Finally, any cell which is on fire but has no fuel is no
longer on fire, since there is no fuel remaining for the
fire to burn through.

We note that though our transition model is supposed to
output a probability distribution over all possible new states,
we found that outputting a probability distribution over the
2% cells each being on fire was too computationally heavy
to maintain. Thus, we instead treated the transition model as a

generative model that samples implicitly from the distribution
of next states. Note that we can still compute the probability
of our generated state.

Finally, we model this problem as a POMDP because
firefighters often do not have complete observability over
the entire terrain, and therefore only know a probability
distribution over which states are on fire. Our FirePOMDP
has a false positive rate of 0.1 and a false negative rate of 0.2,
corresponding to the chances of false reports of fire or not
being aware of fire in a certain area. The observation model
O is then an implicit distribution (similar to the transition
function) over the possible burning grids, where each cell
in the grid is independently flipped with probability 0.1 (if it
is currently not on fire) or with probability 0.2 (if it currently
is on fire). However, we assume that we do have visibility over
the cells we just took an action on, so that for all cells where
we did try to fight a fire, the observation reflects that cell’s
true state. We assume a fixed discount factor of v = 0.9.

C. Default Policy

For this problem, we use several different POMDP solvers
to try to find an optimal policy. We compare the policy
produced by these solvers to a default policy meant to reflect
the actions of firefighters today, which first orders the cells
from highest to lowest cost, and then takes action on the cells
in that order, if it believes they are on fire. Indeed, wildland
firefighters typically prioritize putting out fires in developed
land or land directly adjacent to structures [8].

D. Online Methods

We compare the performance of three online belief-state
planning algorithms to the default policy outlined in the
previous section.

1) Monte Carlo Tree Search: Monte Carlo tree search
(MCTS) for POMDPs produces trees of depth d formed by
sequences of actions and observations [10]. The general MCTS
algorithm aims to estimate a value function Q(h,a), where h
is a history (i.e., a sequence of actions and observations) and a
is an action. From a generative transition model, the algorithm
updates counts N(h,a) for each history-action pair as it
explores, selecting nodes that maximize the Upper Confidence
Bound 1 (UCB1) heuristic, given by

log N (h)

UCBI1(h,a) = Q(h,a) + ¢ N(h.a)’

where c is a constant that balances exploration with exploita-
tion (i.e., choosing the action with the highest value Q(h,a)
for a given history). Above, N(h) =, N(h,a).

Although the version of MCTS presented above is effective
for POMDPs with small, discrete state and action spaces, it
results in very shallow search trees for problems with larger
state and action spaces [10]. Because the wind-driven wildfire
problem has sizeable state and action spaces (especially for
medium and large discretized grids), we rely on a technique
called double progressive widening to avoid a search tree in

which action nodes are seldom or never revisited. This tech-
nique, which was first introduced by Sunberg and Kochender-
fer, limits the number of children of a node in a Monte Carlo
search tree to kN (h)®, where k and « are hyperparameters
and N (h) represents the number of visits to the given node
[10]. Additionally, in double progressive widening, we apply
the above heuristic to sequences of histories and to action
nodes in the Monte Carlo search tree. For history sequences,
the progressive widening process entails selecting a randomly-
generated observation o' (with probability proportional to the
number of times M (o') that observation has been simulated)
when the number of child nodes exceeds kN (h)* upon
simulating an observation o from a given node [10]. Algorithm
1 below provides pseudocode for the progressive widening step
in the action space [10]. Below, C(h) represents the number
of children of a node at history h while STEP adds another
action to the history h.

Algorithm 1 Action-Space Progressive Widening
Input: History h, parameter k, parameter «
Output: Action a
if |C(h)| < kN(h)* then
a < STEP(h)
C(h) + C(h)U{a}
end if
(new < UCBI1(h,a)
return aneyw

AN A

The POMDPs . j1 solver POMCPOW, developed by Sunberg
and Kochenderfer, applies MCTS with double progressive
widening, with a high degree of success in POMDPs with large
or continuous state and action spaces [10]. We apply this solver
directly to the wind-driven wildfire problem, only slightly
adapting the system for updating beliefs that POMCPOW uses.
In particular, the original solver weights belief updates and
adds each simulated state into the weighted particle collection
that the solver uses to update beliefs via particle filtering [10].
Conversely, we utilize a particle filter without rejection (see
Algorithm 2) as presented by Diao et al. [4]; both methods
aim to avoid particle deprivation. This technique utilizes our
generative transition and observation models to appropriately
reweight beliefs according to their likelihood under the ob-
servation model. Because of the size of the observation space
for the wind-driven wildfire problem, Algorithm 2 reweights
all samples uniformly in the event of particle deprivation (i.e.,
all observations have weight zero) [4]. In practice, Algorithm
2 is implemented with multiple execution threads to improve
efficiency. Specifically, due to the independence of each par-
ticle, we can update each one on its own thread. We also
tested BasicPOMCP, a more straightforward implementation
of MCTS without double progressive widening [9], [11].

2) Determinized Sparse Tree Search: We also evaluate
the performance of determinized sparse partially observable
tree search (DESPOT), another online method for solving
POMDPs with large state and action spaces proposed by Ye

Algorithm 2 Particle Filter Without Rejection
Input: Belief b, action a, observation o
Output: Updated belief v’

1: for i + 1,...,]b| do
2: 8; + rand(b)

30 sk« T(si,a)

4 w; < O(o] s, a)
5: end for
6
7
8
9

- if 321" w; = 0 then
: end if
b 0
10: for i < 1,...,]b| do
11: k< rand(1,...,|b;w,..
12 b « push(d',wy)
13: end for
14: return b

S W)p))

et al. [12]. In DESPOT, m particles are maintained, each
representing a scenario of depth d. These particles each follow
deterministic sequences of actions and observations, called
scenarios, for any sequence of d actions. A determinized
sparse tree represents all policies that are possible given a
set of K scenarios, and it is a randomly-sampled subtree of
the full belief tree of a POMDP (i.e., the tree containing
all possible belief trajectories for the POMDP) [12]. This
construction significantly reduces the size of the belief search
tree corresponding to the relevant POMDP, even though the
number of scenarios required to adequately approximate the
true belief tree could be as large as the belief space of the
POMDP [12].

In the notation of Ye et al., a scenario for a belief b is a
sequence (s, @1, ¢o, .. .) where sg is sampled according to the
belief b and each ¢; is sampled uniformly and independently
from the uniform distribution on [0,1]. Under the scenario
(s, P1,P2,...), an action sequence (ai,as,...) will always
produce the same history (ai,01,as,09,...) from the root
of the corresponding belief tree. All nodes and edges of
the trajectory (a1, 01, as,09,...) are thus added to the deter-
minized sparse search tree, up to depth d. Each node of the
determinized sparse search tree then corresponds to a set ®; of
encountered scenarios, and upon exploring histories a history
(a1,01,...,a¢,0) and reaching belief b;, we iteratively add
scenarios of the form (s;, ¢141, dtt2,...) to ®p, to produce
the full determinized sparse tree (in addition to adding the root
scenario (so, 91, P2, - . .) to ®p,, the set of scenarios of the root
of the tree) [12]. This determinizing process reduces the size
of the belief tree of depth d from O(|.A|?|O|¢) to O(JA|K)
nodes, and as shown by Ye et al., it can still produce successful
policies for POMDPs with very large discrete state spaces [12].
Thus, the DESPOT approach is well-equipped for handling the
wind-driven wildfire problem.

Ye et al. also pair DESPOT with a heuristic search method
that helps avoid constructing the full determinized sparse
search tree [12]. In particular, motivated by gap heuristic

search, we must provide upper and lower bounds on the value
U*(b) of the optimal policy for the POMDP. As suggested by
Ye et al., in the context of the wind-driven wildfire problem,
we provide an upper bound of

TT Rmax

Uo(b) = 1~ =0,
as the maximum reward obtained in the wind-driven wildfire
problem is zero if no cells are on fire. Conversely, we provide a
lower bound of U, (b), where 7 is a randomly-generated de-
fault policy. This heuristic allows us to prune the determinized
sparse search tree by only selecting actions that reduce the
gap Ug(bo) — U, (bo) at the root node by, allowing for more
efficient computation [12]. Once Uq(by) — U = (bo) < e for
some tolerance ¢ > 0, the DESPOT search can be terminated.
As with MCTS, DESPOT is implemented in POMDPs. j1
via the solver ARDESPOT (Anytime Regularized DESPOT),
allowing us to immediately apply this method to the wind-
driven wildfire problem [9]. We couple ARDESPOT with a
particle filter without rejection (see Algorithm 2 above) to
update beliefs.

IV. RESULTS

With sufficient hyperparameter tuning, MCTS with double
progressive widening (as implemented by POMCPOW) and
particle filtering without rejection outperformed the default
strategy of extinguishing the highest cost burning cells for all
grid sizes (n = 4,6, 8,10). MCTS without double progressive
widening (as implemented by BasicPOMCP) performed bet-
ter than the default greedy policy for n = 8. Additionally,
ARDESPOT outperformed the default strategy for n = 4;
computational resource limitations significantly hindered its
performance for n = 6,8, 10.

In Table I, we present a comparison of policy found by
MCTS with double progressive widening (via POMCPOW) and
the default greedy policy. For each grid size n, we tuned the
UCBI1 parameter c as a hyperparameter, selecting the value
of ¢ that maximized the advantage of MCTS over the default
policy. The average advantage of MCTS is given by the
average difference between the discounted reward of the policy
found by MCTS over 25 trials (reinitializing the POMDP each
time) and the discounted reward of the default policy for the
same set of 25 POMDP instantiations. The results of tuning

TABLE I
ADVANTAGE OVER BASELINE FOR POMCPOW

Grid Size (n) | UCBI Heuristic ¢ | Average Advantage 0
4 10.0 7.90
6 1.0 26.2
8 0.2 52.6
10 2.0 86.5

the UCB1 parameter ¢ are shown in Figures 3 for grid sizes
n = 4,6,8,10. For all trials, we held the other parameters
of the POMCPOW algorithm constant, including the maximum
depth of the search tree (at d = 10), the number of tree queries
per step (at M = 100), and maximum allowable time for each

UCBL1 Constant Hyperparameter Tuning forn = 4,6, 8

Average Advantage &
o
3

10°
UCB1 Parameter ¢
UCB1 Constant Hyperparameter Tuning for n = 10

Q
Q n-10

50

—50 F

Average Advantage 4
@

=100

10° 10
UCB1 Parameter ¢

Fig. 3. Average advantage ¢ for each grid size n as a function of UCBI1
parameter c. For larger grid sizes, smaller ¢ performs better while for n = 4,
larger c tends to perform better.

tree query (at 7' = 10 seconds). In general, exploration is
preferable for smaller n (corresponding to a lower value of c)
whereas policies that prioritize exploitation (smaller ¢) exhibits
better performance in comparison to the default policy as n
increases. However, the optimal value of ¢ depends heavily
on n, as exhibited by the above plot for n = 10. Figure 4
demonstrates the advantage of the policy found by POMCPOW
over the default policy for n = 8 across all 25 trials at
¢ = 0.2. Although POMCPOW’s policy performed significantly
better than the default policy on average, on specific wildfire
instantiations, its performance was indistinguishable from that
of the default policy (specifically, when the wildfire starts in
a high-cost area of the grid).

POMCPOW Advantage Over Default Policy for n = 8

5| —

Count

JJENNENNEEEN

=50 0 50 100 150 200 250
Advantage &

Fig. 4. Advantage ¢ for n = 8 for ¢ = 0.2 across 25 POMCPOW trials.

Table II demonstrates the performance of BasicPOMCP
and ARDESPOT for smaller grid sizes. For n = 4,6,
BasicPOMCP was virtually indistinguishable from the default
policy in terms of discounted reward. For n = 8, however, it
was able to obtain marginally better results than the default
policy on average. On the other hand, ARDESPOT outper-
formed the default policy (and POMCPOW) for n = 4, but
proved to be computationally intractable on larger grids.

TABLE II
ADVANTAGE OVER BASELINE FOR BASICPOMCP AND ARDESPOT

Algorithm Grid Size (n) | Average Advantage 0
BasicPOMCP | 4 1.51

6 -3.12

8 21.10
ARDESPOT 4 8.42

In Table III below, we also present average runtimes for
all algorithms (where applicable). Average runtimes were
computed by running 10 simulations on a grid of size n x n
for n = 4,6,8,10. Given the formulation of the wind-driven
wildfire POMDP, however, larger grid sizes were intractable
using ARDESPOT, and BasicPOMCP was unable to run
experiments for n = 10. Although runtimes for POMCPOW
occasionally exceeded one minute, it proved to be a much
more efficient algorithm than ARDESPOT, with similar run-
time efficiency to BasicPOMCP for n = 4,6, 8.

TABLE III
AVERAGE RUNTIMES ACROSS ALGORITHMS AND GRID SIZES

Algorithm Grid Size (n) | Average Runtime (s)
POMCPOW 4 0.421

6 2.33

8 11.9

10 30.7
BasicPOMCP | 4 0.302

6 2.81

8 7.62
ARDESPOT 4 16.3

V. DISCUSSION

By modeling wind-driven wildfires as POMDPs and ap-
plying well-established online belief-state planning methods
such as Monte Carlo tree search and determinized sparse tree
search, we were able to significantly outperform the default
greedy policy that targets fire in high-cost areas. By incen-
tivizing exploration through the UCBI1 heuristic, our usage
of the POMCPOW algorithm [10], coupled with a particle filter
without rejection, obtained particularly strong results, reducing
the cost of wildfires on all grid sizes n = 4, 6, 8, 10 relative to
the default policy. As the size of the grid increased, the relative
advantage of POMCPOW over the default policy also increased.
This effect is likely caused by the fact that on larger grids, fire
can spread farther as the simulation continues, meaning the a
pure exploitation strategy such as the default policy will be
inadequate. The default policy performed particularly poorly
when the fire started in low-cost areas before transitioning to

high-cost areas, emphasizing the importance of some degree
of exploration.

MCTS via BasicPOMCP obtained a similar, albeit less pro-
nounced, advantage over the default policy for grid sizes n = 8
and no apparent advantage over the default policy for smaller
n. Although we encountered runtime limitations with deter-
minized sparse tree search as implemented by ARDESPOT, we
were still able to obtain promising results for n = 4. In terms
of runtime, POMCPOW and BasicPOMCP were much more
efficient than ARDESPOT. Even though ARDESPOT attempts
to produce an approximating subset of the full belief tree,
the sheer size of the belief space for the wind-driven wildfire
problem as n increases made this approach computationally
intractable. This indicates that although determinized sparse
tree search may be applicable when the area of interest is
small (i.e., a single neighborhood or several acres of forest),
MCTS-based methods are more appropriate for tracking and
preventing wildfires over large geographic areas.

Finally, we propose several possible improvements of our
approach to modeling wind-driven wildfire events. First, while
using a particle filter without rejection helped mitigate particle
deprivation by some degree, the total number of belief particles
is still relatively small because Algorithm 2 limits the total
number of belief particles to the number of initial belief
particles. Thus, it may be possible to enhance the performance
of all three algorithms even further by utilizing particle filter-
ing with adaptive injection, which balances injecting random
particles to prevent particle deprivation while simultaneously
avoiding the introduction of inaccurate belief particles by
tracking the average weight of all belief particles [13]. This
method could be implemented and used in conjunction with an
algorithm such as POMCPOW or ARDESPOT for belief updates.
Conversely, it may be possible to directly use the POMDPs
solver Adaptive Online Packing-guided Search (AdaOPS),
proposed by Wu et al., which couples an adaptive injection
approach to particle filtering with a heuristic for efficiently
pruning belief trees [13].

In addition to improving performance via adaptive injection,
it may be possible to drastically decrease runtime and therefore
test all of the aforementioned algorithms on larger grids by
restructuring the transition model to iterate over the discretized
grid only once or enhancing the multithreading efforts for
belief updating. Following in the footsteps of Mern et al. and
Shobeiry et al., assuming Gaussian transition dynamics for
wildfire spread could drastically improve computation time,
but this approach would need to be adapted to the context of
variable wind conditions [6], [7].

CONTRIBUTIONS

Kai constructed and fine-tuned parts the wind-driven wild-
fire POMDP simulator and implemented multi-threading,
helped design the two online methods that we applied to the
wind-driven wildfire problem, helped generate figures for our
paper, and helped write the introductory, approach, and results
sections of our paper.

Aditi wrote the observation and belief update models for the
wind-driven wildfire POMDP simulator, implemented and ran
experiments using ARDESPOT and BasicPOMCP, and wrote
parts of the introductory, results, and discussion sections of
our paper.

Jake wrote the transition model for the POMDP for the
wind-driven wildfire POMDP simulator, performed a literature
review, implemented and ran experiments using POMCPOW,
and wrote parts of the introductory, related work, approach,
results, and discussion sections of our paper.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

REFERENCES

Jon E. Keeley and Alexandra D. Syphard. Twenty-first century cal-
ifornia, usa, wildfires: fuel-dominated vs. wind-dominated fires. Fire
Ecology, 15(1):24, 2019.

Max A. Moritz, Tadashi J. Moody, Meg A. Krawchuk, Mimi Hughes,
and Alex Hall. Spatial variation in extreme winds predicts large wildfire
locations in chaparral ecosystems. Geophysical Research Letters, 37(4),
2010.

Yang Cao and Robert G. Fovell. Downslope windstorms of san diego
county. part ii: Physics ensemble analyses and gust forecasting. Weather
and Forecasting, 33(2):539 — 559, 2018.

Tina Diao, Samriddhi Singla, Ayan Mukhopadhyay, Ahmed Eldawy,
Ross D. Shachter, and Mykel J. Kochenderfer. Uncertainty aware
wildfire management. CoRR, abs/2010.07915, 2020.

John Mern, Anil Yildiz, Larry Bush, Tapan Mukerji, and Mykel J.
Kochenderfer. Improved POMDP tree search planning with prioritized
action branching. CoRR, abs/2010.03599, 2020.

Kyle D. Julian and Mykel J. Kochenderfer. Distributed wildfire
surveillance with autonomous aircraft using deep reinforcement learning.
CoRR, abs/1810.04244, 2018.

Poorya Shobeiry, Ming Xin, Xiaolin Hu, and Haiyang Chao. UAV
Path Planning for Wildfire Tracking Using Partially Observable Markov
Decision Process. Navigation, Estimation, Sensing, and Tracking I,
2021.

Katherine Wollstein, Casey O’Connor, Jacob Gear, and Rod Hoagland.
Minimize the bad days: Wildland fire response and suppression success.
Rangelands, 44(3):187-193, 2022. Changing with the range: Striving
for ecosystem resilience in the age of invasive annual grasses.

Maxim Egorov, Zachary N. Sunberg, Edward Balaban, Tim A. Wheeler,
Jayesh K. Gupta, and Mykel J. Kochenderfer. POMDPs.jl: A framework
for sequential decision making under uncertainty. Journal of Machine
Learning Research, 18(26):1-5, 2017.

Zachary Sunberg and Mykel J. Kochenderfer. POMCPOW: an online
algorithm for pomdps with continuous state, action, and observation
spaces. CoRR, abs/1709.06196, 2017.

David Silver and Joel Veness. Monte-carlo planning in large pomdps.
In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta,
editors, Advances in Neural Information Processing Systems, volume 23.
Curran Associates, Inc., 2010.

Nan Ye, Adhiraj Somani, David Hsu, and Wee Sun Lee. DESPOT:
online POMDP planning with regularization. CoRR, abs/1609.03250,
2016.

Chenyang Wu, Guoyu Yang, Zongzhang Zhang, Yang Yu, Dong Li,
Wulong Liu, and Jianye Hao. Adaptive online packing-guided search
for pomdps. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, volume 34, pages 28419-28430. Curran Associates,
Inc., 2021.

	Introduction
	Related Work
	Approach
	Simulation
	POMDP Structure
	Default Policy
	Online Methods
	Monte Carlo Tree Search
	Determinized Sparse Tree Search

	Results
	Discussion
	References

