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Final Paper: the Hausdorff Measure

source: Stein and Shakarchi, Chapter 7

1 Motivation
In this paper, we will introduce the concept of the Hausdoff measure. The Hausdorff measure uses a vol-
umetric concept similar to the natural Lebesgue measure, but does so in a way that formalizes the notion
of dimension. Specifically, we have an innate idea of positive integer dimensions - a line has one dimension,
a square has two dimensions, a cube has three dimensions, and so on. Intuitively, we can think of this
dimension as a description of the way a set scales - if we have a n-dimensional set, then we expect that if we
scale each point in the set by λ, we create λn disjoint copies of the original set. For example, if we have a
line, scaling the line by a factor of 2 will create 2 disjoint copies of the line, while scaling a cube by a factor
of 2 will create 8 disjoint copies.

With this definition of measure, we can define objects to be n-dimensional where n is not a natural number,
but instead a nonnegative real number, which gives us further tools to analyze sets which are not interesting
in integer dimensions.

Specifically, we will find that sets like the Cantor set, which have measure 0 in one dimension, have positive
finite measure in a fractional dimension. With the intuitive definition of measure above, we can see that if
we take each point of the Cantor set to triple its original location, then after the first step we are creating
Cantor sets in [0, 1] and [2, 3], so scaling the Cantor set by a factor of 3 creates two copies of the set, and by
our intuitive definition above, this means that if n is the dimension of the Cantor set, 3n = 2, so n = log3 2.
We will formalize this notion later in the paper.
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Figure 1: the original Cantor set
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Figure 2: the Cantor set scaled by a factor of three

Moreover, we can use the Hausdorff measure to analyze fractals. We know that many fractals are uninterest-
ing in the Lebesgue measure - for example, the Von Koch curve which is pictured in Figure 1 and which we
will formally define later, has infinitely many wrinkles, so that it has infinite measure when considered using
the one-dimensional Lebesgue measure (one can imagine stretching it out over the real line, and see that it
would stretch out infinitely since each step of the fractal creation adds length to the curve). However, it can
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be covered by arbitrarily thin rectangles in two dimensions, and so its two-dimensional Lebesgue measure
is zero. Thus, the Lebesgue measure, or analysis in integer dimensions, does not give us much interesting
information about the Von Koch curve, but using the Hausdorff measure, we will find that it actually has
positive finite measure in log2 3 dimensions.

Figure 3: the Von Koch curve

2 Introduction

2.1 Defining the Hausdorff Measure

The Hausdorff measure is not defined as a singular measure function, but rather as a series of measures
mα(E), where α is the dimension and can be any positive real number. In an intuitive sense, mα(E) is
computed by looking at the minimal covering of E using α-dimensional sets.
Moreover, this means that mα(E) should be zero when α is bigger than the dimension of E and mα(E)
should be infinite when α is smaller than the dimension of E; for example, we can see that when we cover
a unit square with cubes, it can be covered by arbritrarily thin cubes, so it should have zero measure in
three dimensions, and we can see that it is significantly “bigger” than any finite line, so it should have
infinite measure in one dimension. However, we can see that a unit square should have finite measure in two
dimensions, because it can be covered by squares whose total volume isn’t too small.

Definition 2.1. More formally, we define the exterior α-dimensional Hausdorff measure of sets
E ∈ Rd to be

m∗
α(E) = lim

δ→0
inf

∑
k

(diamFk)
α : E ⊂

∞⋃
k=1

Fk,diamFk ≤ δ for all k

 ,

where diamS is the diameter of the set S, or sup
{
|x− y| : x, y ∈ S

}
.

That is, for each set E ∈ Rd, the exterior α-dimensional Hausdorff measure of E is computed by tak-
ing, for each δ, possible countable coverings of E by sets whose diameter is at most δ, and then com-
puting

∑
k(diamFk)

α, which makes sense intuitively if we consider (diamFk)
α to be approximately the

α-dimensional mass of Fk. As usual, we take the infimum over all possible coverings, but then we also take
the limit as δ → 0. We will see soon that the requirement that the sets are arbritrarily small, which is not
necessary in the definition of the Lebesgue measure, is necessary here for additivity for positively disjoint
sets to hold in the Hausdorff measure.

Since we want the exterior measure to exist for all E, we must check that this limit always exists; we can
see that the quantity

Hδ
α(E) = inf

∑
k

(diamFk)
α : E ⊂

∞⋃
k=1

Fk,diamFk ≤ δ for all k


increases as δ decreases, so

m∗
α(E) = lim

δ→0
Hδ

α(E)
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always exists, though it may sometimes be infinite.

We can see also that using (diamFk)
α as our α-dimensional mass of Fk makes sense with the intuitive def-

inition of dimension we discussed in the motivation; since scaling a set Fk by a factor of λ would scale its
diameter by a factor of λ, (diamFk)

α would be scaled by a factor of (λ)α, which is what we wanted.

2.2 Properties of the Hausdorff Measure

We will begin by showing that the exterior α-dimensional Hausdorff measure is a metric Carathéodory ex-
terior measure, by showing that it has the relevant properties. This is an application of Theorem 1.2 from
Chapter 6 of the textbook, which is explained in Appendix A.

Property 1 (Monotonicity). If E1 ⊂ E2 then m∗
α(E1) ≤ m∗

α(E2).

This follows directly from the fact that we are using the infimum of coverings of the sets, and any covering
of E2 will also be a covering of E1.

Property 2 (Sub-additivity). For any countable family
{
Ej

}
of sets in Rd,m∗

α

(⋃∞
j=1 Ej

)
≤
∑∞

j=1 m
∗
α(Ej).

Proof. This is very similar to the proof of sub-additivity for the exterior Lebesgue measure; for any δ and
any ϵ > 0, we know by the definition of infimum that for each j we can pick a covering

{
Fj,k

}∞
k=1

of Ej

such that for all k, diamFk ≤ δ and
∑

k(diamFj,k)
α < m∗

α(Ej) + ϵ/2j . Then,
{
Fj,k

}
is a covering of

⋃
j Ej ,

where diamFj,k ≤ δ for each j, k, so

Hδ
α

(⋃
j Ej

)
≤
∑
j,k

(diamFj,k)
α ≤

∑
j

(m∗
α(Ej) + ϵ/2j) ≤ ϵ+

∑
j

m∗
α(Ej).

Since ϵ is arbitrary, we get that Hδ
α ≤

∑
j m

∗
α(Ej), and since this is true for every δ, we can take the limit

as δ → 0 to get that m∗
α

(⋃∞
j=1 Ej

)
≤
∑∞

j=1 m
∗
α(Ej).

Property 3 (Additivity for Positively Separated Sets). If d(E1, E2) > 0, then m∗
α(E1∪E2) = m∗

α(E1)+
m∗

α(E2).

Proof. We can see that m∗
α(E1 ∪E2) ≤ m∗

α(E1) +m∗
α(E2) follows directly from countable sub-additivity, so

we just need to prove the other direction.

To prove that m∗
α(E1 ∪ E2) ≥ m∗

α(E1) + m∗
α(E2), we can see that for any δ > 0 where δ < d(E1, E2), for

every covering {Fk} of E1 ∪ E2 where each diamFk ≤ δ, we can define
{
F ′
k

}
⊃ E1 and

{
F ′′
k

}
⊃ E2 by

F ′
k = Fk ∩ E1, F ′′

k = Fk ∩ E2

for each k. Since diamFk < d(E1, E2), for each k one of F ′
k, F

′′
k must be the empty set, so

(diamF ′
k)

α + (diamF ′′
k )

α ≤ (diamFk)
α,

and therefore ∑
k

(diamF ′
k)

α +
∑
k

(diamF ′′
k )

α ≤
∑
k

(diamFk)
α.

Since this is true for every such covering Fk, and diamF ′
k ≤ δ and diamF ′′

k ≤ δ for each k, we get that

Hδ
α(E1) +Hδ

α(E2) ≤ Hδ
α(E1 ∪ E2),

and taking the limit as δ approaches 0 gives us that m∗
α(E1 ∪ E2) ≥ m∗

α(E1) +m∗
α(E2).
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From Property 1, Property 2, and the fact that the empty set has measure zero, we can see that the exterior
α-dimensional Hausdorff measure is a Carathéodory exterior measure, and from Property 3 it is a metric
Carthéodory exterior measure, so it is a countably additive measure when restricted to the Borel sets. From
this point onwards, we shall discuss only Borel sets, and write mα(E) instead of m∗

α(E).

Definition 2.2. For Borel sets E ∈ Rd, the measure mα(E) is called the α-dimensional Hausdorff
measure of E.

Property 4 (Countable Additivity). If
{
Ej

}
are countably many disjoint Borel sets, then

mα

(⋃
j Ej

)
=
∑
j

mα(Ej).

(This is simply a restatement of what we said above.)

Our next property discusses how the Hausdorff measure behaves under rotations, translations, and scal-
ing. This should make sense, because we based the Hausdorff measure on the intuitive notion of how an
α-dimensional object should scale.

Property 5. The Hausdorff measure is invariant under rotations and translations;

mα(E + h) = mα(E) for h ∈ Rd

and
mα(rE) = mα(E)

where r is a rotation. Moreover, it scales as follows:

mα(λE) = λαmα(E) for λ > 0.

Intuitively, as the Hausdorff measure is dependent on diameters of sets, the first two properties follow from
the fact that the diameter of a set is invariant under translation and rotation. Moreover, the last property
follows from the fact that diam(λS) = λ diam(S) for all sets S, and then we take the diameter to the α
power when computing the Hausdorff measure. A formalization of this idea is left as an exercise to the reader.

Finally, the remaining properties of the Hausdorff measure help us understand how the measure of a set
varies over different α, allowing us to define the Hausdorff dimension.

Property 6. The quantity m0(E) counts the number of points in E, while m1(E) = mL(E), where
mL(E) is the Lebesgue measure on R, for all Borel sets E ∈ R.

We can see that m0(E) is limδ→0 Hδ
0(E), where Hδ

0 counts the number of sets of diameter at most δ it takes
to cover E. As δ approaches 0, we need a separate set for each point in E, so m0(E) counts the number of
points in E.

For the one-dimensional measure, we will show that we can express any covering of E by intervals I as a
covering of E by sets Fn whose total diameter is the same as the total length of the intervals. Specifically,
we can split each interval I into smaller intervals, of length at most δ, and since the diameter of an interval
is equal to its length, the sum of these lengths must equal the sum of the lengths of the intervals. In the
reverse direction, for any covering of E by sets Fn, we can construct a covering of E by intervals I by noting
that we can cover each Fn by an interval whose length is exactly the diameter of Fn. Thus, since we can
translate coverings back and forth between the two measures, the Lebesgue measure of a Borel set in R must
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equal its one-dimensional Hausdorff measure.

Property 7. If E is a Borel subset of Rd, then cdmd(E) = mL(E), for some constant cd that depends
only on the dimension d.

The constant cd that we use is exactly mL(B)/(diam(B))d, where B is the d-dimensional unit ball. Note that
this ratio is the same for all d-dimensional balls, so this states that the ratio of the d-dimensional Lebesgue
measure to the d-dimensional Hausdorff measure is the ratio of the volume of a ball to the dth power of its
diameter, which makes sense because when computing the Hausdorff measure, we use the dth power of the
diameter as an approximation for the size of a set.

Proof. First, we will show that cdmd(E) ≤ mL(E). We know that for every δ, ϵ > 0, we can find a covering{
Bj

}
of E such that every Bj is a ball with diameter less than δ and

∑
j mL(Bj) ≤ mL(E) + ϵ. Then, we

have that

Hδ
d ≤

∑
j

(diamBj)
d =

1

cd

∑
j

mL(Bj) ≤
1

cd
mL(E) +

1

cd
ϵ.

Taking the limit as δ approaches 0 gives us that md(E) ≤ 1
cd
mL(E) + 1

cd
ϵ, and since ϵ is arbritrary, we get

that cdmd(E) ≤ mL(E).

Then, we will show the opposite direction. This requires the isodiametric inequality, which states that
for any diameter, the set with that diameter which has the largest volume is a ball. We will use this without
proof.

Specifically, by the infimum in the definition of the Hausdorff measure, for any δ, ϵ > 0, we can find a covering
{Fn} of E such that for every n, diamFn ≤ δ and

∑
n(diamFn)

d ≤ Hδ
d(E) + ϵ. Then, we have that by

countable subadditivity,

mL(E) ≤ mL
(⋃

n Fn

)
≤
∑
n

mL(Fn),

and by the isodiametric inequality, mL(Fn) ≤ mL(Bn) where Bn is a ball with the same diameter as Fn.
Then,

mL(E) ≤
∑
n

mL(Bn) =
∑
n

cd(diamFn)
d ≤ cdHδ

d(E) + cdϵ.

Taking the limit as delta and epsilon go to 0 gives us mL(E) ≤ cdmd(E).

Thus, mL(E) = cdmd(E).

Thus, for sets embedded in Rd, the d-dimensional Haussdorf measure of a set is proportional to its Lebesgue
measure, so the two measures behave similarly under nice conditions.

Now, we can prove the final property that leads us to the definition of the Hausdorff dimension:

Property 8. Ifm∗
α(E) < ∞ and β > α thenm∗

β(E) = 0, and ifm∗
α(E) > 0 and β < α, thenm∗

β(E) = ∞.

Proof. For the first statement, note that for any δ > 0, for any set F such that diamF ≤ δ, then (diamF )β =
(diamF )β−α(diamF )α ≤ δβ−α(diamF )δ. But this implies that

Hδ
β(E) ≤ δβ−αHδ

α(E) ≤ δβ−αm∗
α(E).

Then, taking the limit as δ approaches 0 gives us m∗
β(E) ≤ 0, so m∗

β(E) = 0.

The second statement is just the contrapositive of the first.
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This means that for every set E, there is at most one α such that mα(E) is both positive and finite.

To gain an intuition for how the α-dimensional Hausdorff measure works in different dimensions, we will
consider a few examples.

Example 2.3. First, if I is a finite line segment in Rd then m1(I) is positive and finite.

Example 2.4. Similarly, if Q is a k-cube; that is, the product of k intervals and d − k points, then
mk(Q) is positive and finite.

Example 2.5. If E is a set in Rd, then mα(E) = 0 for all α > d.

3 Hausdorff Dimension

3.1 Defining the Hausdorff Dimension

The properties above intuitively lead to the notion of the Hausdorff dimension of a set E being the unique
α for which E has β-dimensional Hausdorff measure 0 for all β > α and β-dimensional Hausdorff measure
∞ for all β < α.

Definition 3.1. The Hausdorff dimension of a set E is the unique α such that

mβ(E) =

{
0 if β > α

∞ if β < α.

We write this as α = dimE.

Note that this is not necessarily saying that mα(E) is positive or finite, and it may be the case that E
has Hausdorff dimension α but mα(E) is 0 or ∞. If we know that mα(E) is positive and finite, and E is
bounded, we say that E has strict Hausdorff dimension α.

Corollary 3.2. If 0 < mα(E) < ∞ for some α, then α must be the strict Hausdorff dimension of E.

This follows directly from Property 8.

Definition 3.3. If E is a set of fractional dimension, we call it a fractal.

There is no easy general method for computing the Hausdorff measure of a set. It is sometimes clear what
the dimension is for nice sets, as in Example 2.4, but for more interesting sets E we have to prove that its
dimension is α by bounding mα(E) above and below, so that it is clear that the dimension of E is α, but
not necessarily what its α-dimensional Hausdorff measure actually is.

3.2 Computing the Hausdorff Dimension

We will begin by computing the Hausdorff dimension of the Cantor set.

3.2.1 The Cantor Set

Recall that the Cantor set is the set C that was the set remaining after we start with the interval [0, 1] and
then repeatedly remove the middle third of each interval. For a formal definition of the Cantor set, refer to
Appendix B.
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Figure 4: the process of creating the Cantor set

We said in the motivation for this paper that if we think of dimension as a sort of scaling factor, then it
would make sense for the Cantor set to have a dimension of log3 2, because scaling each point by a factor of
three would result in two disjoint copies of the Cantor set, one in [0, 1] and one in [2, 3]. We will now see
formally that this is indeed the Hausdorff dimension of the Cantor set.

Theorem 3.4. The Cantor set C has dim C = log 2
log 3 .

For this section, we will define αc = log 2
log 3 , for ease of notation. Then, we will show that dim C = αc by

showing that the αc-dimensional Hausdorff measure of C is positive and finite. In order to show that it is
positive, however, we use the Cantor-Lebesgue function, which is defined in Appendix B, to map C onto
[0, 1], and use a property of the mapping based on the fact that it satisfies a Lipschitz condition. We will
define these properties first.

Definition 3.5. A function f defined on a subset E of Rd satisfies a Lipschitz condition with
exponent γ if there exists some M > 0 such that∣∣f(x)− f(y)

∣∣ ≤ M |x− y|γ for all x, y ∈ E.

Intuitively, this is a way of saying that a function does not jump around too much over a narrow space. We
can use this to place a bound on how much the measure of the image of a set can differ from its preimage
under the mapping.

Lemma 3.6. Suppose a function f defined on a compact set E satisfies a Lipschitz condition with
exponent γ. Then,

1. mβ(f(E)) ≤ Mβmα(E) if β = α/γ

2. dim f(E) ≤ 1
γ dimE,

where M > 0 is the value such that
∣∣f(x)− f(y)

∣∣ ≤ M |x− y|γ for all x, y ∈ E.

Proof. For any ϵ, δ > 0, let {Fn} be a collection of sets that cover E such that for each n, diamFn ≤ δ and∑
n(diamFn)

α < Hα
δ + ϵ. Then,

{
f(E ∩ Fn)

}
is a collection of sets that cover f(E), and we can see that for

each n, f(E ∩ Fn) has diameter at most M(diamFn)
γ . But this means that

Hα/γ
Mδ (f(E)) ≤

∑
n

(diamFn)
α/γ ≤ Mβ

∑
n

(diamFn)
α ≤ MβHα

δ +Mβϵ.

Taking the limit as δ and ϵ go to zero, we get that mβ(f(E)) ≤ Mβmα(E). Then, the second part follows
directly from the first.

Lemma 3.7. The Cantor-Lebesgue function F on C satisfies a Lipschitz condition with exponent γ = αc.

Proof. We defined the Cantor-Lebesgue function F as the limit of a sequence of functions {Fn} where Fn

increased by at most 2−n on all intervals of length 3−n. Thus, Fn increases by at most
(
3/2
)n|x− y| on an
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interval [x, y], and since we also know that
∣∣F (x)− Fn(x)

∣∣ ≤ 2−n for all x ∈ [0, 1], we get that∣∣F (x)− F (y)
∣∣ ≤ ∣∣F (x)− Fn(x)

∣∣+∣∣Fn(x)− Fn(y)
∣∣+∣∣Fn(y)− F (y)

∣∣
≤
(
3

2

)n

|x− y|+ 2

2n

for all x, y ∈ [0, 1]. But since this is true for all n, we can pick an n depending on x and y to make this
inequality nice.

Specifically, we can always pick n such that 1 ≤ 3n|x− y| ≤ 3 by taking n to be
⌈
log|x− y|

⌉
. Then, we get

that ∣∣F (x)− F (y)
∣∣ ≤ 5

2n

, and since αc = log3 2, this means that
∣∣F (x)− F (y)

∣∣ ≤ 5(3−n)αc . But since 3n|x− y| ≥ 1, we can see that
|x− y| ≥ 3−n, and ∣∣F (x)− F (y)

∣∣ ≤ 5|x− y|αc .

Thus, F satisfies a Lipschitz condition with exponent γ = αc.

Now, we have enough background to prove Theorem 3.4.
We will prove first that mαc

(C) ≤ 1 and then that mαc
(C) > 0. This shows that mαc

(C) is positive and
finite, which means αc must be the dimension of C from Corollary 3.2.

For the first part, note that we defined C as
⋂

n Cn, where each Cn has 2n intervals of length 3−n and covers
C. Then, for each δ > 0, we can simply pick N such that 3−N < δ. This makes CN a valid covering of C,
and we can see that

Hδ
αc
(C) ≤ 2n(3−n)αc = 1

since (3−n)αc = 2−n by definition. Taking the limit as δ goes to 0 gives us that mαc
(C) ≤ 1.

For the second part, we can use Lemma 3.7 to apply Lemma 3.6 to the Cantor-Lebesgue function, giving us

m1([0, 1]) ≤ Mmαc
(C).

But we know that m1([0, 1]) = 1, so mαc
(C) ≥ 1/M (since M is nonzero), and this means that mαc

(C) > 0.

Thus, mαc(C) is positive and finite, so dim C = log3 2.

So now we have seen one example of computing the dimension of a fractional-dimension set. We can consider
another, similar example - the Sierpinski triangle.

3.2.2 The Sierpinski Triangle

· · ·

Figure 5: the steps to create the Sierpinski triangle

The Sierpinski triangle is a Cantor-like set that is constructed in the plane. We begin with a closed equi-
lateral triangle S0 with unit-length sides. Then, the first generation S1 is defined to be S0 with the middle
open equilateral triangle removed, as pictured, so that S1 is the union of three smaller equilateral triangles.
Then, in each generation Sn+1, we take the equilateral triangles in Sn and remove the middle equilateral
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triangle as we did in the creation of S1, so that generation Sn has 3n closed equilateral triangles, each with
side length 2−n. We can see moreover that each Sn is a compact set, and Sn+1 ⊂ Sn for all n ≥ 0.

Then, in a similar fashion to the Cantor set, we define the Sierpinski triangle as follows.

Definition 3.8. The Sierpinski triangle S is the compact set defined to be the intersection of each
generation in its creation, or

S =
⋂
n

Sn.

We can see here that similarly to the Cantor set, scaling each point in the Sierpinski triangle by 2, so
that S0 now has a side length of 2, would create three disjoint copies of our original triangle, so we might
expect that the Sierpinski triangle has a dimension of log2 3. Indeed, this is what we will now formally prove.

Theorem 3.9. The Sierpinksi triangle S has strict Hausdorff dimension log2 3.

We will define αs = log2 3 for ease of notation.

We will again prove this by showing that mαs(S) is positive and finite.

We can show that mαs
(S) ≤ 1 in a very similar procedure to that of the Cantor set. We know that for any

δ > 0, we can find N such that 2−N < δ. Then, we can see that SN is a covering of S that contains 3N

triangles, and since the diameter of an equilateral triangle is equal to its side length, the diameter of each of
these triangles is 2−N < δ. Thus,

Hδ
αs
(S) ≤ 3N (2−N )αs = 1,

since (2−N )αs = 3N . Taking the limit as δ approaches 0, we get that mαs
(S) ≤ 1, so the αs-dimensional

Hausdorff measure of S is finite.

The other direction, showing that mαs(S) > 0, is a bit more complicated. First, we will call the lower-left
vertex of each triangle the shiny vertex of that triangle - this is important because the shiny vertices in any
Sn will also be part of S. We can see that since there are 3n triangles in Sn, Sn must have 3n shiny vertices.
Then, we will claim that there is a positive constant c such that for any δ > 0, for any covering {Fn} of S
such that diamFn ≤ δ/2 for each n, ∑

n

(diamFn)
αs ≥ c.

Then, since every set Fn is contained in a ball Bn with diameter at most 2 diamFn, it is enough to show
that for any covering {Bn} of S by balls Bn such that diamBn ≤ δ,∑

n

(diamBn)
αs ≥ c,

because this means that every covering {Fn} has
∑

n(diamFn)
αs ≥ c/2αs , which is still a constant. We will

prove this now, picking c to be c′′/c′, where c′ = 9π/4, or the area of a circle with diameter 3, and c′′ =
√
3/4,

or the area of an equilateral triangle with side length 1, though the exact values of c′ and c′′ are unimportant.

For any such covering of S by balls, we can choose k such that

2−k ≤ min
n

diamBn < 2−k+1,

and consider the shiny points in the kth generation that our balls cover.
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Lemma 3.10. Suppose B is a ball in our covering such that

2−ℓ ≤ diamB ≤ 2−ℓ+1 for some ℓ ≤ k.

Then, B covers at most 3k−ℓ/c shiny vertices from the kth generation.

Proof. Let B∗ be the ball with the same center as B but three times its diameter. Then, for any kth gener-
ation triangle △k whose shiny vertex is in B, we can define △′

ℓ to be the ℓth generation triangle containing
△k, and since diamB ≥ 2−ℓ, we can see that △′

ℓ must be fully contained in B∗.

Figure 6: for a shiny vertex in B, the relevant triangles △k and △′
ℓ

But the area of each triangle in the ℓth generation is 4−ℓc′′ and the area of B∗ is 4−ℓc′, so there are at most
1/c triangles in the ℓth generation that are fully contained in B∗. Each one contains 3k−ℓ triangles of the
kth generation so there can be at most 3k−ℓ/c shiny points of the kth generation covered by B.

Now, we can use this lemma to get back to proving that
∑

n(diamBn)
αs ≥ c. For each natural number ℓ,

we can define Nℓ to be the number of balls B in {Bn} such that 2−ℓ ≤ diamB < 2−ℓ+1. Then, we can see
that ∑

n

(diamBn)
αs ≥

∑
ℓ

Nℓ(2
−ℓ)αs =

∑
ℓ

Nℓ3
−ℓ.

But since the number of shiny vertices of the kth generation covered by the balls is at most
∑

ℓ Nℓ3
k−ℓ/c, and

we need all 3k shiny vertices to be covered, we get that
∑

ℓ Nℓ3
k−ℓ/c ≥ 3k, so

∑
ℓ Nℓ3

−ℓ ≥ c. Thus, using
our above inequality,

∑
n(diamBn)

αs ≥ c, and since this is true for every possible covering of S, mαs
(S) ≥ c.

Thus, mαs(S) is positive and finite, so dimS = αs.

We used very similar steps in proving the Hausdorff dimension of these two sets. We will generalize these
steps in the next section, and then use the generalization to compute the dimension of one more (slightly
different) fractal.

3.3 Self-Similarity

What we used to intuit, and in a more indirect way, to compute the Hausdorff dimension of the Sierpinski
triangle and the Cantor set was the fact that both could be expressed as the union of scaled down versions
of themselves. For example, C ∩ [0, 1/3] is a scaled-down version of the Cantor set, C ∩ [1/3, 2/3] = ∅, and
C ∩ [2/3, 1] is also a scaled-down version of the Cantor set. We can also express C as the union of four
scaled-down versions of itself in intervals of length 1/9, and so on. Similarly, the Sierpinski triangle is the
union of three scaled-down versions of itself, one in each of the three triangles in S1, or nine scaled-down
versions of itself, one in each of the nine triangles in S2, and so on.

10
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Figure 7: the three scaled-down versions of the Sierpinksi triangle, in different colors

In this section, we will formalize the notion of self-similarity, and use it to prove some more general ideas
about the Hausdorff dimension of a fractal.

Definition 3.11. A similarity with ratio r > 0 is a mapping S : Rd → Rd such that∣∣S(x)− S(y)
∣∣ = r|x− y| .

That is, a similarity is a mapping that preserves the relative position of the points in the original set. It is
left as an exercise to the reader to show that every self-similarity can be expressed as the composition of a
translation, rotation, and dilation by r.

Definition 3.12. We say that a set F ∈ Rd is self-similar if there exist finitely many similarities
S1, . . . Sm with the same ratio r such that

F = S1(F ) ∪ S2(F ) ∪ · · · ∪ Sm(F ).

This makes sense with how we were describing the Cantor set and Sierpinski triangle - the sets are self-similar
because they are equal to a finite number of scaled copies of themselves.

Example 3.13. Formally, we can see that C is self-similar because it can be expressed as S1(C)∪S2(C),
where

S1(x) =
x

3
and S2(x) =

x

3
+

2

3
.

We can see that both these similarities have r = 1/3.

Example 3.14. The Sierpinski triangle S is self-similar because it can be expressed as S1(S)∪ S2(S)∪
S3(S), where

S1(x) =
x

2
, S2(x) =

x

2
+

(
1

4
,

√
3

4

)
, S3(x) =

x

2
+

(
1

2
, 0

)
.

Each of these similarities has ratio 1/2.

11
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Another example, which is very similar to the first two, is the Cantor dust D, another two-dimensional
version of the Cantor set. This version can be defined for any 0 < µ < 1

2 , and it is constructed iteratively
as follows. First, we begin with the unit square D0. Then, to construct D1, remove everything except the
four squares in the corner of side length µ. We repeat this step iteratively, so that to construct D2 we look
at each smaller square and remove everything except the corner squares of side length µ2, and D3 has 64
squares of side length µ3, and so on. This gives us a sequence of compact sets D0 ⊃ D1 ⊃ D2 ⊃ · · · , and as
one might expect, we define the Cantor dust to be

D =
⋂
n

Dn.

Figure 8: the first few steps in creating the Cantor dust

Example 3.15. The Cantor dust D is also a self-similarity; it can be expressed as S1(D) ∪ S2(D) ∪
S3(D) ∪ S4(D), where we define the similarities

S1(x) = µx, S2(x) = µx+ (0, 1− µ), S3(x) = µx+ (1− µ, 0), S4(x) = µx+ (1− µ, 1− µ).

Each of these similarities has ratio µ.

First, we will prove that given any set of similarities, assuming the ratio is decreasing the size of its input,
we can find a set that is self-similar using those similarities.

Theorem 3.16. Suppose S1, S2, · · ·Sm are m similarities, each with the same ratio 0 < r < 1. Then,
there exists a unique non-empty compact set F such that

F = S1(F ) ∪ S2(F ) ∪ · · · ∪ Sm(F ).

We prove this by essentially taking a large ball B and iteratively applying the similarities to the ball. Because
the ratio is less than 1, the ball contracts as we do this, so repeatedly applying the similarities converges to
such a set F .

We begin with a lemma that allows us to find such a relevant ball.

Lemma 3.17. There exists a closed ball B so that Sj(B) ⊂ B for all 1 ≤ j ≤ m.

Proof. We note that for any x, we can express∣∣Sj(x)
∣∣ ≤ ∣∣Sj(x)− Sj(0)

∣∣+∣∣Sj(0)
∣∣ ,

and by definition of a similarity, this means that∣∣Sj(x)
∣∣ ≤ r|x|+

∣∣Sj(0)
∣∣ .

Then, we can see that for any x within a ball B of radius Rj ≥
∣∣Sj(0)

∣∣ /(1 − r) centered at the origin, the
above inequality tells us that Sj(x) is also at most Rj away from the origin, so Sj(B) ⊂ B. But then, we
can define B to be a closed ball centered at the origin with radius maxj

∣∣Sj(0)
∣∣ /(1 − r), Sj(B) ⊂ B for all

j, which is exactly what we wanted.

12
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Then, for ease of notation, we will define S(A) to be S1(A) ∪ · · · ∪ Sm(A) for any set A. Note that while
each Sj is a mapping of points, S is a mapping from sets to sets.

Moreover, to better understand the contraction of sets that we are creating, we will introduce the notion of
Hausdorff distance between sets.

Definition 3.18. We define the Hausdorff distance between compact sets A and B to be

dist(A,B) = inf
{
δ : Aδ ⊃ B and Bδ ⊃ A

}
,

where Aδ is the set, for any δ > 0,

Aδ =
{
x : dist(x,A) < δ

}
.

Intuitively, we can think of the Hausdorff distance as how far we need to expand one set to reach the furthest
end of the other. We will leave it to the reader to verify that the Hausdorff distance satisfies the three
properties of a valid distance.

Similarities interact with distance in the way one might expect.

Lemma 3.19. If S1, . . . , Sm are similarities with ratio r, then for any compact sets A,B,

dist(S(A), S(B)) ≤ r dist(A,B).

Proof. We can define DA,B to be the set
{
δ : Aδ ⊃ B and Bδ ⊃ A

}
. Then, we can see that for any δ ∈ DA,B ,

for any x ∈ B, d(x,A) < δ, where d(x,A) is the standard Euclidean distance. But then by definition
of a similarity, for any x ∈ S(B), d(x, S(A)) < rδ, so S(B) ⊂ S(A)rδ and we can similarly show that
S(A) ⊂ S(B)rδ. But since this is true for all such δ, we get that DS(A),S(B) ⊃

{
rδ : δ ∈ DA,B

}
, so by taking

the infimum we can see that dist(S(A), S(B)) ≤ r dist(A,B).

Then, we can use these two lemmas to prove Theorem 3.16.

We begin by constructing such an F . First, pick the ball B as defined in Lemma 3.17. We will define the
sequence of sets F0 = B and Fn = S(Fn−1). We can see that since B is compact and nonempty, so is each
Fn. Moreover, since S(B) ⊂ B, we have that for each n, Fn ⊂ Fn−1. Then, we can let

F =

∞⋂
n=1

Fn,

and clearly F is also compact and nonempty. Moreover, S(F ) =
⋂∞

n=2 Fn = F , so F has the property we
wanted.

To see that F is unique, we can see that for any other compact set G such that S(G) = G, Lemma 3.19
tells us that dist(S(F ), S(G)) = dist(F,G) ≤ r dist(F,G). Since r < 1, this implies that dist(F,G) = 0 and
therefore F = G.

Now, for a self-similar set F , if the similarities S1(F ), . . . Sm(F ) do not overlap too much, we can compute
in general the Hausdorff dimension of F .

For disjoint S1(F ), . . . , Sm(F ), this dimension is not difficult to find. We can simply use countable additivity
of the Hausdorff measure to see that

mα(F ) =

m∑
j=1

mα(Sj(F )).

13
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But since every Sj scales F by a factor of r, it also scales the diameter of each set in a cover of F by a factor
of r, so mα(Sj(F )) = rαmα(F ), so

mα(F ) = mrαmα(F ).

But this means when mα(F ) is positive and finite, we must have 1 = mrα, so α = (logm)/(log 1/r). Note
that this just implies that if there is a strict Hausdorff dimension of F , it has this value, but it may be the
case that F has no strict Hausdorff dimension.

We will show that this is true in a slightly more general case, which we will call separated similarities.

Definition 3.20. A set of similarities S1, . . . Sm are separated if we can find a bounded open set O
such that

O ⊃ S1(O) ∪ S2(O) ∪ · · · ∪ Sm(O)

and the sets Sj(O) are disjoint.

Example 3.21. The similarities S1, S2 as defined for the Cantor set are separated, because if we take
O = (0, 1) we can see that S1(O) = (0, 1/3) and S2(O) = (2/3, 1), so O ⊃ S1(O) ∪ S2(O) and the two
sets are disjoint.

Now, we can get to our big theorem about the Hausdorff dimension of self-similar sets.

Theorem 3.22. If S1, S2, . . . , Sm are separated similarities with ratio 0 < r < 1, then their self-similar
set F ⊂ Rd has strict Hausdorff dimension (logm)/(log 1/r).

We will prove this theorem using a very similar strategy to the proof of the Hausdorff dimension of the
Sierpinski triangle. We will define α = (logm)/(log 1/r) for ease of notation. Then, we will first prove that
mα(F ) is finite, and then prove that it is positive.

To prove that it is finite, we consider the ball B as defined in Lemma 3.17. We know that Fi, as defined in
the proof of Theorem 3.16 is the union of mi balls of diameter cri, where c is the diamter of B. Thus, for
any δ > 0, we can find a k such that Fi is a covering of F by balls of diameter less than δ. Thus,

Hδ
α(F ) ≤ mi(cri)α ≤ cα,

since mrα = 1 by definition. Then since this is true for all δ > 0, we can take the limit as δ approaches 0 to
get that mα(F ) ≤ cα, which means F has finite α-dimensional Hausdorff measure.

To prove that it is positive, we begin by picking a point x in F . Then, we define the shiny vertices of the ith

generation (or the shiny vertices of Fi) to be the mi points

Sn1
◦ · · · ◦ Sni

(x) 1 ≤ n1 ≤ m, . . . 1 ≤ ni ≤ m,

which are the mi points that x maps to in the ith generation. We will label each such vertex (n1, . . . , ni)
and note that we don’t care if multiple shiny vertices map to the same point.

We also take an open set O that has the property from the definition of separated similarities. We will
similarly define the shiny open sets of the ith generation to be sets O maps to in the ith generation, or

Sn1
◦ · · · ◦ Sni

(O) 1 ≤ n1 ≤ m, . . . 1 ≤ ni ≤ m,

which are again labeled (n1, . . . ni).

Then, since the shiny open sets of the first generation are disjoint by definition, we can inductively see that
the shiny open sets of the ith generation are disjoint for all i. Moreover, again by the separation property,

14
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for any i ≥ ℓ, each shiny open set of the ℓth generation contains mi−ℓ shiny open sets of the ith generation.

Then, for any shiny vertex v of the ith generation, let O(v) be the shiny open set with the same label as v.
Then, we can see that by definition of a similarity,

d(v,O(v)) = rid(x,O), (1)

and
diam(O(v)) = ri diam(O), (2)

where what matters is that d(x,O) and diam(O) are constants with relation to v and i.

Similarly to the proof for the Sierpinski triangle, we want to prove that there is some constant c such that
for δ > 0 and every covering

{
Bj

}
of F by balls Bj with radius less than δ,∑

j

(diamBj)
α ≥ c.

For any such covering
{
Bj

}
, we look at the ball with the minimum diameter and define k to be the integer

such that
rk ≤ min

j
diamBj ≤ rk−1.

Then, we prove a lemma very similar to Lemma 3.10.

Lemma 3.23. For any ball B in our covering, define ℓ ≥ k to be the integer such that

rℓ ≤ diamB ≤ rℓ−1.

Then B contains at most c1m
k−ℓ shiny vertices of the kth generation, where c1.

Proof. Note by Equation 1 and Equation 2, there exists some constant c′ such that if we define B∗ to be the
dilation of B by a factor of c′, then for any shiny vertex v contained in B, B∗ contains O(v) and moreover
B∗ contains the shiny open set from the ℓth generation that contains O(v).

Then, B∗ has volume at most rdℓ times c′d times the volume of a unit ball, and each shiny open set in the
ℓth generation has volume rdk times the volume of O, which means that at most c1 shiny open sets of the
ℓth generation can fit in B∗, where c1 is dependent only on x and O. But this means that at most c1m

k−ℓ

shiny open sets of the kth generation fit in B∗, so at most c1m
k−ℓ shiny vertices of the kth generation fit in

B.

Then, we can use this lemma to return to proving that∑
j

(diamBj)
α ≥ c.

Specifically, let Nℓ be the number of balls B in our covering such that rℓ ≤ diamB ≤ rℓ−1. Then, we can
see that ∑

j

(diamBj)
α ≥

∑
ℓ

Nℓ(r
ℓ)α.

But we know that the total number of shiny vertices of the kth covered by these balls is at most
∑

ℓ Nℓc1m
k−ℓ,

and since the balls must cover all mk shiny vertices of the kth generation, we get that∑
ℓ

Nℓc1m
k−ℓ ≥ mk

∑
ℓ

Nℓm
−ℓ ≥ 1/c1.
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Then, taking c = 1/c1, and since by our definition of α, (rℓ)α = m−ℓ,∑
j

(diamBj)
α ≥

∑
ℓ

Nℓm
−ℓ ≥ c.

Thus, mα(F ) ≥ c, so the α-dimensional Hausdorff measure of F is also positive, and the strict Hausdorff
dimension of F is α.

This is a really cool general theorem about the Hausdorff dimension of a fractal, and to show this we will
use it to compute the Hausdorff dimension of a fractal that is less similar to the Cantor set.

3.3.1 The Von Koch Curve

The Von Koch curve is a curve again defined iteratively. It is better described in pictures, where each Kn is
a curve embedded in R2, and each Kn adds a “bump” in the middle of each line segment in Kn−1, so that
Kn is the curve consisting of 4n line segments, each of length 3−n.

Figure 9: the first steps in creating the Von Koch curve

Definition 3.24. We define the Von Koch curve K to be the limit limn→∞ Kn, or the limit as we
keep adding bumps to the line.

Figure 10: the Von Koch curve

This is a very informal definition of K, but we can define it more formally as a self-similarity.

Definition 3.25. We define the Von Koch curve to be the unique self-similarity in R2 for the simi-
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larities

S1(x) =
1

3
(x)

S2(x) =
1

3
ρ(x) +

(
1
3 , 0
)

S3(x) =
1

3
ρ−1(x) +

(
1
2 ,

√
3
6

)
S4(x) =

1

3
(x) +

(
2
3 , 0
)
,

where each of these similarities has ratio r = 1
3 and ρ is defined to be a rotation about the origin by π/3.

From what we learned in the previous subsection, we can now easily prove the following theorem.

Theorem 3.26. The Von Koch curve has strict Hausdorff dimension log3 4.

Proof. First, we can see that these similarities are separated by taking the open set O shown in the following
picture. Showing that O follows the properties we want for separated similarities is a matter of algebra, so
it is left as an exercise to the reader.

Figure 11: our set O is the full grey triangle, and the similarities are applied to O in purple

Now, we can cite Theorem 3.22 directly to see that since m = 4 and r = 1
3 , the Von Koch curve has strict

Hausdorff dimension log4 3.

This is the conclusion of our discussion on the Hausdorff dimension, but we will turn to look at more inter-
esting things we can do with self-similar sets.

4 Space-Filling Curves
We will now see that fractals and self-similarities are useful also in studying the Lebesgue measure. Specif-
ically, we look at a type of fractal that has a Hausdorff dimension of exactly two, but which is constructed
out of a line, allowing us to make mappings from sets with finite nonzero one-dimensional Lebesgue measure
to sets with finite nonzero two-dimensional Lebesgue measure. The family of fractals that involve drawing a
singular line to fill a unit square are called space-filling curves, and they tend to look like the sort of doodles
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one might make if they are trying to fill time as well as space.

In this section, we will look at the Peano curve specifically. The Peano curve looks like the following, and
we will define it formally later in the section.

Figure 12: the initial steps in creating the Peano curve

We can see that this is a self-similarity - though I will not formalize this, we can see that the Peano curve is
equal to four copies of itself, each scaled by 1/4, which means it is not difficult to use the previous section
to see that it has a strict Hausdorff dimension of 2. However, we can prove something even more specific
about the Peano curve and similar space-filling curves.

We will define the Peano curve as the image of a mapping P : [0, 1] → [0, 1]× [0, 1], so that we can analyze it
mathematically. What we find is that the Peano curve fills the entire unit square, and moreover that besides
some measure-zero subset of [0, 1], the Peano curve maps any subset of the unit interval to a subset of the
unit square in a way that preserves measure.

In this section, we will usem1 to denote one-dimensional Lebesgue measure andm2 to denote two-dimensional
Lebesgue measure. Then, formally, what we will prove is that

Theorem 4.1. There exists a mapping P : [0, 1] → [0, 1]× [0, 1] such that:

1. P is both continuous and surjective.

2. P satisfies a Lipschitz condition of exponent 1/2, so∣∣P(x)− P(y)
∣∣ = |x− y|1/2 .

3. For any interval [a, b] ⊂ [0, 1], P([a, b]) is a compact subset of the unit square such thatm2(P([a, b])) =
b− a.

The last item of this theorem implies the following corollary.

Corollary 4.2. There are measure-zero subsets Z1 ⊂ [0, 1] and Z2 ⊂ [0, 1]× [0, 1] such that P is bijective
from

[0, 1] \ Z1 to [0, 1]× [0, 1] \ Z2

and for any subset E of [0, 1] \ Z1, E is measurable if and only if P(E) is measurable, and

m2(P(E)) = m1(E).

We can note that it is impossible for such a mapping to be bijective on the whole interval [0, 1]; if a contin-
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uous and surjective mapping F : [0, 1] → [0, 1] × [0, 1] were also bijective then it would have an inverse G
that would also be continuous and injective. But then for any points a, b ∈ [0, 1] × [0, 1], we can pick any
two curves from a to b and see that the preimage of those two curves must intersect at some point besides
G(a) and G(b), so G is not injective.

To define this mapping and prove this theorem, we first need to understand ways of dividing up the unit
interval and unit square, so that we can map one to the other.

4.1 Quartic Intervals and Dyadic Squares

We begin by defining the quartic intervals and dyadic squares, and listing properties of the two that are
useful for mapping one to the other.

Definition 4.3. The quartic intervals are the intervals constructed by repeatedly dividing the unit
interval into fourths. Specifically, the kth generation quartic intervals are all intervals of the form[

ℓ
4k
, ℓ+1

4k

]
for integer ℓ with 0 ≤ ℓ < 4k.

Definition 4.4. A chain of quartic intervals is a sequence of intervals

I1 ⊃ I2 ⊃ I3 ⊃ · · ·

where for each k, Ik is a kth generation quartic interval.

Quartic intervals have a few relevant properties.

Proposition 4.5. 1. For any chain of quartic intervals {Ik}, there exists a unique t ∈ [0, 1] such that
{t} = ∩kIk.

2. For any t ∈ [0, 1] there exists a chain of quartic intervals {Ik} such that {t} = ∩kIk.

3. The set of all t ∈ [0, 1] such that this chain is not unique has measure 0.

The proof of these properties is left as an exercise to the reader; it is very similar to some of the proofs in
the homework problem about the Cantor-Lebesgue function.

Then, we can naturally represent each chain {Ik} as a string “.a1a2a3 . . .” where each ak = 0, 1, 2, or 3, so
that the point t such that {t} = ∩kIk is exactly

t =
∑
k

ak4
−k.

Note that the points t that don’t have a unique representation are the ones for which after a certain k, all
ak’s are 3, or after a certain k, all ak’s are 0.

We will define dyadic squares in a very similar way.

Definition 4.6. The dyadic squares are the squares constructed by repeatedly bisecting the sides of
the unit square. Specifically, there are 4k dyadic squares in the kth generation, each with side length
(1/2)k.
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Definition 4.7. A chain of dyadic squares is a sequence of squares

S1 ⊃ S2 ⊃ S3 ⊃ · · · ,

where for each k, Sk is a kth generation dyadic square.

Proposition 4.8. 1. For any chain {Sk} of dyadic squares, there exists a unique point x ∈ [0, 1]×[0, 1]
such that {x} =

⋂
k Sk.

2. For any x ∈ [0, 1]× [0, 1], there exists a chain {Sk} of dyadic squares such that {x} =
⋂

k Sk.

3. The set of x ∈ [0, 1]× [0, 1] such that this chain is not unique has measure zero.

These proofs follow the exact format as for the quartic intervals, so they are left to the reader.

Moreover, as in the quartic intervals, each chain {Sk} can be encoded as “.b1b2b3 . . .” where each bk = 0, 1, 2,
or 3, and then the x such that x =

⋂
k Sk is exactly

x =
∑
k

bk2
−k,

where

bk =


(0, 0) if bk = 0

(0, 1) if bk = 1

(1, 0) if bk = 2

(1, 1) if bk = 3.

.

4.2 Dyadic Correspondence

Now, we will look at ways to map the quartic intervals to the dyadic squares. We will find that mappings
that have specific properties fulfill most of the results of Theorem 4.1 and then we will define the Peano
mapping as a specific mapping that has this property.

Definition 4.9. A dyadic correspondence is a mapping ϕ from quartic intervals to dyadic squares
such that

1. The mapping ϕ is bijective.

2. If I is a quartic interval of the kth generation, then ϕ(I) is a dyadic interval of the kth generation.

3. If I ⊂ J then ϕ(I) ⊂ ϕ(J).

Definition 4.10. Given a dyadic correspondence ϕ, the induced mapping ϕ∗ is a mapping from
[0, 1] → [0, 1]× [0, 1] defined as follows: for t ∈ [0, 1], if {t} =

⋂
k Ik then

ϕ∗(t) =
⋂
k

ϕ(Ik),

which we can do since
{
ϕ(Ik)

}
is a chain of dyadic squares.

Our induced mapping ϕ∗ is well-defined almost everywhere; it is well-defined when t corresponds to a unique
chain {Ik}.
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Moreover, we can see that whenever I is a quartic interval of the kth generation, ϕ∗(I) = ϕ(I) and
m1(I) = 4−k = m2(ϕ

∗(I)).

Now we can prove our big theorem about dyadic correspondences.

Theorem 4.11. For any dyadic correspondence ϕ, there exist measure-zero sets Z1 and Z2 such that

1. The induced mapping ϕ∗ is a bijection from [0, 1] \ Z1 to [0, 1]× [0, 1] \ Z2.

2. For any subset E of [0, 1] \ Z1, E is measurable if and only if ϕ∗(E) is measurable, and m1(E) =
m2(ϕ

∗(E)).

To prove the first part, we will define N1 to be the collection of chains of quartic intervals that correspond
to a t with a non-unique chain, and N2 to be the collection of chains of dyadic squares that correspond to
an x with a non-unique chain.

Then, since ϕ is a bijection from quartic intervals to dyadic squares, it is also a bijection from N1 ∪ϕ−1(N2)
to ϕ(N1) ∪ N2, and therefore it is a bijection from (N1 ∪ ϕ−1(N2))

c to (ϕ(N1) ∪ N2)
c. Then, we define Z1

to be the subset of [0, 1] that corresponds to the chains in N1∪ϕ−1(N2) and Z2 to be the subset of ϕ(N1)∪N2.

Clearly, then ϕ∗ is well-defined and a bijection from [0, 1] \ Z1 to [0, 1] × [0, 1] \ Z2. We now need to prove
that Z1 and Z2 have measure zero, and to do so we use the following two lemmas.

Lemma 4.12. For a given sequence {fk} where each fk = 0, 1, 2, or 3, the set

E0 =
{
x : x =

∑
k

ak4
−k and there exists r > 0 such that ak ̸= fk for all k ≥ r

}
has measure 0.

Proof. We can see that for any given r > 0 the set {x : ar ̸= fr} has measure 3/4, so the set

{x : ar ̸= fr and ar+1 ̸= fr+1}

has measure (3/4)2, and inductively we get that

m({x : ak ̸= fk for all k ≥ r}) = lim
n→∞

(3/4)n = 0.

Then, since E0 is the countable union of such sets, m(E0) = 0 as well.

We will not prove the following lemma, but it follows the same proof as above.

Lemma 4.13. For a given sequence {fk} where each fk = 0, 1, 2, or 3, the set

E0 =
{
x : x =

∑
k

bk2
−k and there exists r > 0 such that bk ̸= fk for all k ≥ r

}
has measure 0.

Then, since all elements of N1 correspond to strings where all ak = 0 for sufficiently large k or all ak = 3 for
sufficiently large k, we can apply Lemma 4.12 to the sequence {1} to see that the set of points corresponding
to chains in N1 is a measure-zero set.

Similarly, if we consider the strings N2 can correspond to, we find that applying Lemma 4.13 to the sequence
1, 2, 1, 2, . . . tells us that the set of points corresponding to chains in N2 has measure zero. We can similarly
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show that ϕ(N1) and ϕ−1(N2) have measure zero. Thus, we have shown the first part of Theorem 4.11.

Now, we will show that on the interval where ϕ∗ is defined, it is measure-preserving. First, we know from
lecture that any open set O in the unit interval can be expressed as a countable union of closed intervals⋃

n In such that the closed intervals have disjoint interiors. Moreover, inspection of the proof of this theorem
shows us that furthermore, we can force each In to be quartic intervals. Similarly, we can show that any
open set in the unit square can be expressed as the countable union of dyadic squares whose interiors are
disjoint.

Then, for any measure-zero set E ⊂ [0, 1] \ Z1, for any ϵ > 0 we can cover E by quartic intervals
{
Ij
}
such

that
∑

j m1(Ij) < ϵ. Then, since ϕ∗(E) ⊂
⋃

j ϕ
∗(Ij),

m2(ϕ
∗(E)) ≤

∑
j

m2(ϕ
∗(Ij)) =

∑
j

m1(Ij) < ϵ,

so taking the limit as ϵ approaches 0, we get that m2(ϕ
∗(E)) = 0 so ϕ∗(E) is measurable. By a similar

argument, we can see that (ϕ∗)−1 maps measure zero sets in [0, 1]×[0, 1]\Z2 to measure zero sets in [0, 1]\Z1.

But then since we know we can express any open set as the countable union of quartic intervals, we can use the
same argument to see that for any open set O ⊂ [0, 1], ϕ∗(O\Z1) is measurable and m2(ϕ

∗(O\Z1)) = m1(O).
Thus, ϕ∗ is measure-preserving for Gδ subsets of [0, 1], and since every measurable set differs from a Gδ set by
a measure zero set, we can combine the previous two paragraphs to see that for any measurable E ⊂ [0, 1]\Z1,
ϕ∗(E) is measurable and m2(ϕ

∗(E)) = m1(E). A similar argument holds for (ϕ∗)−1, and so this mapping is
measure-preserving.

Now that we have proved the big theorem for dyadic mappings, we will look at the Peano mapping as a
specific type of dyadic mapping.

4.3 Constructing the Peano Mapping

We will find that the Peano mapping is the unique way of tracing along the dyadic squares so that the kth

generation path travels in the same direction as the (k − 1)th generation path and we only travel between
dyadic squares that share a side. We will now formalize this definition.

Definition 4.14. We say that two quartic intervals of the same generation are adjacent if they share
a point, and two dyadic squares of the same generation are adjacent if they share a side.

Now, we will construct the dyadic correspondence associated with the Peano mapping.

Lemma 4.15. There is a unique dyadic correspondence ϕP such that

1. If I and J are adjacent quartic intervals of the same generation, then ϕP (I) and ϕP (J) are adjacent
dyadic squares of the same generation.

2. In each generation, if I is the left-most quartic interval of that generation then ϕP (I) is the bottom-
left dyadic square of that generation, and if J is the right-most quartic interval of that generation
then ϕP (J) is the bottom-right quartic interval of that generation.
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To prove this, we need the following definition.

Definition 4.16. For any square S and its four sub-squares, an acceptable traverse of S is an ordering
S1, S2, S3, S4 of the four sub-squares so that if one sub-square follows another in the ordering, the two
sub-squares are adjacent.

We can see that if we color the subsquares like a checkerboard so that S1 is white, then S4 must be black,
and our traverse alternates black and white squares.

Moreover, for any square S, if we are given a starting sub-square S1 and an edge σ of S so that we have to
end at a sub-square touching σ, there is only one valid traverse of S that fits this criteria.

Figure 13: an acceptable traverse given a start square and an end edge

Now, we can go back to proving our lemma. First, it is clear that ϕP is defined for the first genera-
tion: it must be the mapping below.

Then, we can see that if ϕP is defined for all generations up to generation k, we can inductively define it for
generation k + 1. This is done as follows. First, number the kth generation quartic intervals in increasing
order as I1, I2, . . . , I4k and number the kth generation dyadic squares as Sj = ϕP (Ij) for each 1 ≤ j ≤ 4k.

Then, we can divide I1 into the four (k + 1)th generation quartic intervals I1,1, . . . I1,4 in increasing order,
and then define the mapping S1,j = ϕP (I1,j) where S1,j is the unique valid traverse of the four subsquares
S1 such that S1,1 is the lower-left dyadic square of the unit square, and the traverse ends at the edge shared
between S1 and S2. This is possible because by the inductive hypothesis S1 and S2 are adjacent and S1 is
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the lower-left dyadic square.

Then, we similarly divide I2 into its four quartic sub-intervals and define the mapping S2,j = ϕP (I2,j) where
S2,j is the unique traverse of S2 where S2,1 is the unique subsquare adjacent to S1,4 and the traverse ends
at the edge shared between S2 and S3.

We inductively repeat this process for each Sk for 1 ≤ k ≤ 4k − 1, where we can see that we always enter
each Sk through a white subsquare and leave through a black subsquare.

Specifically, this means that we will enter S4k from a white subsquare, so the unique tranverse that ends
at the bottom edge of S4k must leave through the black subsquare touching the bottom edge, which is the
bottom-right dyadic square of the unit cube, which is what we needed it to be.

Thus, we have inductively created a valid ϕP , and since the tranverses we used were unique, this ϕP is unique
and we have proved our lemma.

Then, we can construct the actual Peano curve. For each generation k, the curve Pk though each dyadic

square is some rotation of or ; specificially, the rotation that connects the previous and next
dyadic square in our ordering.

Specifically, for each generation k, we map the center of the interval Ij to the center of the square Sj , where
the ordering of the squares is defined as in the previous lemma, and we map the start and end of the interval
to the middle of the left edge of the bottom-left square and the middle of the right edge of the bottom
right-square, respectively. Then, we play connect-the-dots to define the rest of the map Pk, connecting these
points linearly in the given order of the dyadic squares.

Figure 14: creating P2 from our second generation of quartic intervals and dyadic squares

Then, since each of these are continuous functions, and for any t ∈ [0, 1], since Pk(t) and Pk+1(t) are both
in the same kth generation dyadic square, we get that

∣∣Pk(t)− Pk+1(t)
∣∣ ≤ √

2

2−k
,

so we can define

P(t) = lim
k→∞

Pk(t) = P1(t) +

∞∑
k=1

Pk+1(t)− Pk(t),

and since this converges absolutely and uniformly, P exists and is also a continuous function.

Moreover, since Pk(t) visits every kth generation dyadic square, P is dense in the unit square, and since it is
also continuous, it must be a surjective mapping from [0, 1] to [0, 1]× [0, 1]. This proves part of Theorem 4.1.
To prove the measure-preserving part, we will show that P is exactly ϕ∗

P .
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Lemma 4.17. For every 0 ≤ t ≤ 1, ϕ∗
P (t) = P(t).

Proof. First, we can see that ϕ∗
P is well-defined for every t. Specifically, we can see that if t =

⋂
k Ik and

t =
⋂

k Jk for two distinct chains of quartic intervals, then for all sufficiently large k Ik and Jk must be adja-
cent. But that means that ϕP (Ik) is adjacent to ϕP (Jk) for all sufficiently large k, so

⋂
k ϕP (Ik) =

⋂
k ϕP (Jk).

Then, we can see that by our definition of P, for all t,⋂
k

ϕP (Ik) = lim
k

Pk(t) = P(t),

so the two are equal.

We can see moreover that this implies ϕP (I) = P(I) for any quartic interval I. But then, since any
interval (a, b) can be written as

⋃
j Ij where the Ij are quartic intervals with disjoint interiors, and then

P(Ij) = ϕP (Ij) must be dyadic squares with disjoint interiors and P((a, b)) =
⋃

j P(Ij), we get that

m2(P((a, b))) =
∑
j

m2(P(Ij)) =
∑
j

m1(Ij) = m1((a, b)) = b− a.

This proves the measure-preserving part of Theorem 4.1, and we are done.
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Appendices

A Exterior Measures
The content of this appendix comes from Chapter 6 of Stein and Sakarchi.
As a reminder, we will first review the definition of an exterior measure.

Definition A.1. An exterior measure is a function µ∗ defined on a set X that has the following prop-
erties:

• The exterior measure of the empty set, µ∗(∅), is zero.

• (monotonicity) For any sets E1 ⊂ E2 ⊂ X µ∗(E1) ≤ µ∗(E2).

• (countable sub-additivity) For a countable family of sets {Ei} where each Ei ⊂ X,

µ∗
(⋃∞

i=1 Ei

)
≤

∞∑
i=1

µ∗(Ei).

Moreover, recall that we proved in class the following theorem.

Theorem A.2. For any exterior measure µ∗ on a set X, the collection M of Carathéodory sets on X
forms a σ-algebra, and µ∗ restricted to M is a measure.

Then, on sets X that are metric spaces - that is, there is a distance function d defined on the space that
fulfills all three properties of a distance - we can define metric exterior measures.

Definition A.3. A metric exterior measure is an exterior measure µ∗ defined on a metric space X
such that

µ∗(A ∪B) = µ∗(A) + µ∗(B) whenever d(A,B) > 0,

where we define the distance between sets A and B to be

d(A,B) = inf
{
d(x, y)|x ∈ A, y ∈ B

}
.

Using just these properties of a metric exterior measure, we can prove the following theorem.

Theorem A.4. If µ∗ is a metric exterior measure on a metric space X, then the Borel sets BX are
measurable, and therefore µ∗ restricted to BX is a measure.

Proof. Since we know that measurability is closed under countable unions and intersections, and measure-
zero sets are measurable, we simply need to show that closed sets are Carathéodory measurable.

Then, for an arbritrary closed set F and an arbritary set A ⊂ X such that µ∗(A) < ∞, we split A into
subsets An for each positive integer n, such that

An =

{
x ∈ A : d(x, F ) ≥ 1

n

}
.

Then, clearly for each n we have that An ⊂ An+1, and since F is closed, F c ∩A =
⋃

n An.

Then, for each n, since d(F,An) > 0 and µ∗ is a metric exterior measure,

µ∗(A) ≥ µ∗((F ∩A) ∪An) = µ∗(F ∩A) + µ∗(An).
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We want to take the limit as n tends to infinity to get one side of Carathéodory measurability, but to do
that, we need

lim
n→∞

µ∗(An) = µ∗(F
c ∩A).

To do that, we will divideA into “onion rings;” that is, defineBn = An+1∩Ac
n, soBn =

{
x ∈ A : 1

n+1 ≤ d(x, F ) < 1
n

}
.

Then, the triangle inequality tells us that

d(Bn+1, An) ≥
1

n(n+ 1)
,

so since µ∗ is a metric exterior measure,

µ∗(A2k+1) ≥ µ∗(A2k−1) + µ∗(B2k).

But repeating this tells us that

µ∗(A2k+1) ≥
k∑

j=1

µ∗(B2j),

and similarly

µ∗(A2k) ≥
k∑

j=1

µ(B2j−1).

But since µ∗(A) is finite, both sums
∑∞

j=1 µ(B2j−1) and
∑∞

j=1 µ(B2j) must be convergent.

This tells us that we can take the limit of

µ∗(An) ≤ µ∗(F
c ∩A) ≤ µ∗(An) +

∞∑
j=n+1

Bj

to get that limn→∞ µ∗(An) = µ∗(F
c ∩A).

Then, we can return to the inequality µ∗(A) ≥ µ∗(F ∩ A) + µ∗(An); taking the limit as n goes to infinity
gives us µ∗(A) ≥ µ∗(F ∩A) + µ∗(F

c ∩A).

The other direction follows directly from countable subadditivity, so all closed sets F are Carathéodory
measurable, and therefore all Borel sets are measurable.

B The Cantor Set
The description of the Cantor set is sourced from the first homework, and the description of the Cantor-
Lebesgue function is sourced from Chapter 3 of Stein and Shakarchi.

To construct the Cantor set, we begin with the unit interval [0, 1], which we will call C0. Then, we define C1

to be the union of two intervals
[
0, 1

3

]
∪
[
2
3 , 1
]
. We repeat this process indefinitely, so that to construct Cn we

remove the middle third of each interval in Cn−1, and each set Cn consists of 2n closed intervals of length 3−n.

...
...

...
...

...
...

...
...

Figure 15: the first steps in creating the Cantor set
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Definition B.1. Then, we define the Cantor set C to be
⋂

n Cn.

Since this is the intersection of decreasing compact sets, we know that C is also a compact set and it is
nonempty because, for example, the point 1

3 is in C.

The Cantor set is uncountable but has measure zero; proving this will be left as an exercise to the reader.

We then turn to defining the Cantor-Lebesgue function by first defining functions Fn : [0, 1] → [0, 1] based
on our sets Cn. We want each Fn(x) to be linearly increasing on Cn and constant on Cc

n. Specifically, we
know since Cn is the union of 2n disjoint closed sets, Cc

n is the union of 2n−1 disjoint open sets, so we define
Fn(x) such that if x is in the kth open interval in Cc

n, Fn(x) = k/2n. Moreover, Fn(0) = 0 and Fn(1) = 1.
For example,

F1(x) =


3
2x if 0 ≤ x ≤ 1

3
1
2 if 1

3 < x < 2
3

3
2x− 2

3 if 2
3 ≤ x ≤ 1.

Definition B.2. Then, we define the Cantor-Lebesgue function to be the function F : [0, 1] → [0, 1]
such that F (x) = limn→∞ Fn(x).

Since {Fn} is a sequence of continuous increasing functions and for each x,∣∣Fn(x)− Fn−1(x)
∣∣ ≤ 2−n−1,

so these functions converge uniformly, we can see that F is continuous and increasing. Moreover, F (0) = 0,
F (1) = 1, and F is constant on every interval in Cc.
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