
CS 254b Aditi Talati June 6, 2022

Super-Duper Concentrators and the Pebble Game

Note: For this paper, the section on superconcentrators primarily follows Chapter 23 of the translated version
of Gems of Theoretical Computer Science [SP98]. The section on super-duper concentrators primarily follows
Chapter 24 of the same book [SP98], with the exception that the proof of the main lemma (Lemma 3.9) follows
the proof in the original paper [PTC76], which I believed to provide more intuition for the lemma. Moreover,
the construction of the actual super-duper concentrator in the book [SP98] and in the paper [PTC76] were
slightly different, and I used a construction midway between the two, which I thought was most convenient
for making the proofs that followed as clear as possible.

1 Introduction and Background
The pebble game, like most games useful for theoretical analysis, is a fun game to play if you have a very
strange definition of fun. However, it is a very cute and interesting way to study properties of graphs, and as
we showed in class, we can use the pebble game as a metaphor for the computations made by an algorithm
in order to further understand limits on their space complexity. In this paper, we will explore some very
strange and interesting graphs, which are hard to pebble, in order to show a lower bound on the number of
pebbles needed to win the general pebble game.

Reminder 1.1. As we learned in class, the pebble game is a game defined on a directed acyclic graph.
Our goal is to get a pebble on a given sink vertex, while using as few total pebbles as possible.

To accomplish this goal, we have the following rules:

1. We define a predecessor of a vertex j to be any vertex i such that there is a directed edge i → j.
Then, we can only place a pebble on j if there are currently pebbles on all of j’s predecessors.

2. As the above implies, we can always place a pebble on a source vertex (one with no in edges).

3. At any time, we can remove a pebble from any vertex with no cost.

Moreover, in class we proved the following theorem:

Theorem 1.2 (Hopcroft-Paul-Valiant [HPV77]). Every v-vertex constant in-degree graph can be peb-
bled with v/ log v pebbles.

That is, in class we found a strategy to pebble every v-vertex constant in-degree graph with v/ log v pebbles.
We will show in the rest of this paper that this bound is tight; that is, we will find a family of graphs such
that we cannot win the pebble game with less than Ω(v/ log v) pebbles.

To prove this, we will take quite a long and casual stroll, stopping at various points along the way to smell
the roses. For the entire first part of this paper, we will explore properties of a special type of graph, called

1



CS 254b Aditi Talati June 6, 2022

a superconcentrator, showing that we can construct superconcentrators without using too many edges.
Then, we will construct what we call a super-duper concentrator by stacking these superconcentrators
in a specific way, and spend the rest of this paper proving that super-duper concentrators give us the lower
bound we want on the pebble game.

2 Superconcentrators
We will now construct a type of graph called a superconcentrator, which we can think of abstractly as graphs
with many disjoint paths from the entry to the exit; these will be helpful for making a hard-to-pebble graph
because an appropriately constructed graph would force us to place pebbles on each of these disjoint paths.

Definition 2.1. A n-superconcentrator is a directed acyclic graph, where some subset of n nodes are
chosen to be the “entry” nodes, and some subset of n nodes are chosen to be the “exit” nodes, such that
for any subset of 1 ≤ k ≤ n entry nodes and k exit nodes, we can find k node-disjoint paths mapping
each entry node in the subset to some exit node in the subset.

(assuming every edge in the picture is a directed edge going from left to right, the above is a
5-superconcentrator)

Another way of phrasing this condition is that in our superconcentrator, we can take any subset A of the
entry nodes, and any equal-sized subset B of the exit nodes, and there is some one-to-one mapping f : A → B
such that for every node a ∈ A, there is some path a → f(a) that does not intersect with any of the other
paths a′ → f(a′).

(the above is an example of two subsets of the exit and entry nodes and our node-disjoint paths connecting
the nodes)

2



CS 254b Aditi Talati June 6, 2022

Example 2.2. The graph on the left is not a superconcentrator because no paths we can find connecting
the blue nodes will be node-disjoint ; they will all go through the center node. The graph on the right is
not a superconcentrator because there are no two paths connecting the blue subsets.

Clearly, with more edges, it is easier to construct a superconcentrator; for example, with n2 edges we can
construct the superconcentrator where every entry node has an edge to every exit node.

Our goal is to construct a superconcentrator with as few edges as possible.

Remark 2.3. To be careful about notation, we will note here that n here is not the total number of
vertices in our graph, but instead the number of entry and exit nodes in our graph; therefore, an n-
superconcentrator always has at least 2n vertices, and the ones we are looking at will often have more.
In the case we do need to denote the total number of vertices, we will use the variable v.

Example 2.4. Just to get our minds working in the correct direction, and because it is kind of a fun
proof, we will first prove that for any n, we can construct a n-superconcentrator with O(n log n) edges.

Proof. We can construct such a superconcentrator using recursion. Specifically, we can construct a 1-
superconcentrator using one edge, via the graph:

Then, if we say that Sk is the k-superconcentrator that we construct, we can construct our n-superconcentrator
as:

3



CS 254b Aditi Talati June 6, 2022

(where the grey edges are the same as the black edges, just colored differently so that the entire graph is
easier to see)

First, we can see that if g(k) is the number of edges in our k-superconcentrator, then g(n) = 4n+ 2g(n/2),
since we have two n/2-superconcentrators, and then we add two edges for each of our entry nodes and two
edges for each of our exit nodes. Moreover, g(1) = 1, so we can solve this recurrence relation to get that
g(n) = 4n log n+ n, so g(n) = O(n log n), as we wanted.

Then, we need to prove that Sk is a superconcentrator for all k. We can again prove this by induction; at a
base-case, S1 is clearly a 1-superconcentrator.

For the inductive step, we look at Sn, and consider an arbitrary subset of k entry nodes and k exit nodes. We
can see that we can split each subset into two, so that there are j < k entry nodes mapping to the top Sn/2

and k − j entry nodes mapping to the bottom Sn/2; similarly, we can connect j of the exit nodes of the top
Sn/2 to j of the exit nodes in our subset and k−j of the exit nodes of the top Sn/2 mapping to the remaining
k − j exit nodes in our subset. We can do this in such a way that no two nodes in our subset are connected
to the same entry or exit node of their corresponding Sn/2, so that this start of our path is node-disjoint so far.

(an example mapping step for a given subset of the entry and exit nodes)

Then, by our inductive assumption Sn/2 is a superconcentrator, so we can find j node-disjoint paths con-
necting our selected nodes in the top Sn/2 and k − j node-disjoint paths connecting our selected nodes in
the bottom Sn/2. But this gives us our k node-disjoint paths connecting our entry and exit subsets, so we
have shown that Sn is a superconcentrator.

Thus, by induction, Sk is a superconcentrator for all k.

Note that the superconcentrator we designed above is also a permutation network; it is stronger than a
vanilla superconcentrator because for any subset of the entry and exit nodes, we can find k node-disjoint
paths mapping the entry nodes to the exit nodes in any order we want.

Perhaps this is a sign that the superconcentrator is more than what we asked for, and we can make a super-
concentrator that’s just the “bare minimum” by using fewer edges.

Theorem 2.5. There is a constant c such that for every n, there is a superconcentrator with cn edges.

We will build this superconcentrator recursively, as in the previous proof. Our 1-superconcentrator will be
the same graph as before:

4



CS 254b Aditi Talati June 6, 2022

Then, to construct our superconcentrator Sn, we will assume n = 6m for some m, and use S4m as a backbone.
To turn S4m into a 6m-superconcentrator, we will use a graph M , with 6m inputs and 4m outputs, which
is not itself a superconcentrator but has some desirable properties that will allow our entire construction
to be a superconcentrator. We will also use the graph MR, which is just M but reversed. Specifically, our
construction looks like the following:

In order for this to be a superconcentrator with cn edges, we need an M with very specific properties. In
the following lemma, we will describe how M is structured.

Lemma 2.6. There exists a constant c′ such that for every n = 6m, we can construct a graph M with
the following properties:

• M is a bipartite graph with 6m input nodes and 4m output nodes.

• For any subset of k ≤ 3m input nodes, there is some subset of k output nodes such that there are
k node-disjoint paths from the input subset to the output subset.
(Note that this is different from the definition of a superconcentrator, which requires us to have
node-disjoint paths to all k-subsets of the output, rather than just one.)

• M has at most c′n edges.

We will not prove this lemma in this paper; the proof is long and somewhat tangential to our ultimate goal
of learning more about the pebble game. The idea behind the proof of this lemma is probabilistic. We look
at all bipartite graphs M with 6m input nodes and 4m output nodes, where every output node has in-degree
9 and every input node has out-degree 6. Then, using a property called the Marriage Theorem, we can count
the number of such graphs that do not fulfill the properties of Lemma 2.6. We find that the probability that
a random bipartite graph constructed in this way fulfills Lemma 2.6 is greater than zero, which means there
must exist some graph M that we want.

Now that we have this lemma, we can finish our proof of Theorem 2.5. Specifically, we can first show that
this graph is a superconcentrator for every n. We can show this inductively. At a base case, S1 is clearly a
superconcentrator.

For the inductive case, we are trying to show that Sn is a superconcentrator. We consider arbritrary subsets
A of k entry nodes and B of k exit nodes. Then, note that if k > 3m, we know that by the Pigeonhole
Principle, because A and B both contain more than n/2 nodes, there must be at least one node in A that
has a horizontal (grey) edge connecting it to a node in B. Thus, while k > 3m, we can pair off at least
k − 3m of the nodes simply by using the grey horizontal edges; these are clearly node-disjoint paths.

5

https://en.wikipedia.org/wiki/Hall%27s_marriage_theorem#:~:text=Graph%20theoretic%20formulation%5Bedit%5D


CS 254b Aditi Talati June 6, 2022

Thus, we have reduced to the case of finding node-disjoint paths connecting subsets A′ and B′ of the entry
and exit nodes, respectively, where

∣∣A′
∣∣ = ∣∣B′

∣∣ ≤ 3m. We know by Lemma 2.6 that there is some subset of
output nodes of M such that there are k′ node-disjoint paths from A′ to these output nodes. By reversing
this, we can also see that there are there are k′ node-disjoint paths from some input nodes of MR to B′.
What’s left is to map these output nodes to the input nodes. But this is just the problem of finding k′ node-
disjoint paths along S4m, which we know we can do because S4m is a superconcentrator, by the inductive
assumption. Thus, by induction, Sn is an n-superconcentrator for every n.

We will also show by induction that these superconcentrators have at most cn edges, where c = 6c′ + 9 and
c′n is the number of edges in our subgraph M . At a base case, we can see that S1 has 1 edge. For the
inductive case, we can see that the number of edges in any Sn is 3n, plus the number of edges in M and MR,
plus the number of edges in S4m. By the inductive assumption, S4m has 4c′n+6n edges, and by Lemma 2.6,
M and MR each have c′n edges. So, in total, our Sn has

3n+ 4c′n+ 5n+ 2c′n = (6c′ + 9)n = cn

edges. Thus, by induction, the number of edges in our graph is linear in n.

We have now constructed a family of superconcentrators that have linearly many edges!

But our pebble game upper bound only applies to graphs of constant in-degree; that is, we care about
families of graphs where we can find a constant c such that every vertex in all of our graphs has in-degree
at most c. In order to use these superconcentrators to prove our pebble game lower bounds, it will also be
helpful to verify that they have constant in-degree, and to count the number of vertices they have.

Proposition 2.7. The superconcentrators constructed in Theorem 2.5 are all graphs with in-degree at
most 9.

Proof. We will again prove this by induction. Our superconcentrator S1 has in-degree 1. Then, for our
inductive case, we can look at each set of nodes in Sn separately. The exit nodes clearly have in-degree 2.
Then, by our construction in Lemma 2.6, every output node in MR has in-degree 6. The input nodes for
MR are the output nodes in S4m, and by our inductive assumption, we know that every node besides the
entry nodes for S4m have in-degree at most 9. The entry nodes for S4m are the output nodes for M , which
by our construction have in-degree 9. Finally, the input nodes for M have in-degree 1. Thus, in total, the
nodes in Sn have in-degree at most 9, so by induction our superconcentrators all have in-degree at most
9.

Proposition 2.8. The number of vertices in the n-superconcentrator we construct is O(n).

Proof. Note that every vertex has at least one edge. Thus, since each edge connects exactly two vertices,
the number of vertices is at most twice the number of edges. By Theorem 2.5 there are cn edges in our
superconcentrator Sn; this implies there are at most 2cn = O(n) vertices in each Sn.

Now that we have our linear-sized superconcentrators, we have the building blocks to construct a hard-to-
pebble graph.

6



CS 254b Aditi Talati June 6, 2022

3 Super-Duper Concentrators
Now that we have our linear superconcentrators, we can stack them to create our super-duper concentrators,
which we will prove are hard to pebble. We will first describe how to construct these super-duper concen-
trators, and then once we have these graphs built, we will analyze various properties of these graphs and of
the pebble game. Finally, we will build on this knowledge to prove our v/ log v lower bound for the pebble
game!

Definition 3.1. We define our super-duper concentrators recursively. At a base case, we start with G8,
which we define to be S28 from our previous section, or our linearly-sized 256-superconcentrator. Then,
once we have each Gn, we can build Gn+1 as:

Here, Gn+1 has 2n+1 entry vertices and 2n+1 exit vertices, which are both divided into two sets (E1 and
E2, and A1 and A2, respectively). Moreover, each entry has an edge directly to its corresponding exit,

and to an entry node for S
(1)
2n . The exit nodes for S

(1)
2n are the entry nodes for G

(1)
n , each exit node for

G
(1)
n has an edge directly to its corresponding entry node in G

(2)
n , and each exit node for G

(2)
n is also an

entry node for S
(2)
2n . Finally, each exit node in S

(2)
2n has an edge directly to its corresponding vertex in

A1, and to its corresponding vertex in A2.

Then, in order to prove pebble game results about Gn, we need to know that it is a constant in-degree graph
and we need to know the number of vertices in our graph.

Proposition 3.2. The super-duper concentrators we constructed all have in-degree at most 9.

Proof. We can prove this inductively, using the fact that Proposition 2.7 tells us that all our linear super-
concentrators have in-degree at most 9. At a base case, since G8 = S256, Proposition 2.7 gives us the result
we want. Then, we can see that for the inductive case, in our graph Gn, our last layer A1 and A2 have
in-degree 2. Then, by our inductive assumption and Proposition 2.7 our superconcentrator and Gn−1 layers

have in-degree at most 9, and finally the entry layer for G
(1)
n−1 clearly has in-degree 2. Thus, by induction,

these constructed super-duper concentrators also have in-degree at most 9.

Proposition 3.3. There is a constant c such that for all n, Gn has at most cn2n vertices.

Solution. Again we will prove this inductively. For a base case, we can see that since G8 = S256, Propo-
sition 2.8 tells us that there exists some constant c′ such that it has c′2n vertices. Then, for our inductive
case, we can see that since Gn is composed of the entry vertices, the exit vertices, two copies of S2n−1 , and
two copies of Gn, by Proposition 2.8 and the inductive assumption, we get that the number of vertices in
Gn is at most

2(2n + c′2n−1 + c(n− 1)2n−1) = (c(n− 1) + 2 + 2c′)2n,

so taking c = 2 + 2c′, we get the desired result.
Then, we have a c such that for every n, Gn has at most cn2n vertices. This means that we want to show
it takes asymptotically (cn2n)/ log(cn2n) pebbles, or that there exists some constant c′ such it requires c′2n

pebbles to win the pebble game on Gn.

7



CS 254b Aditi Talati June 6, 2022

But we’ve been sort of unclear about what it means to win the pebble game on Gn. Specifically, the way
we required the pebble game at the beginning required a specific sink node that we were trying to pebble.
From now on, we will try to accomplish a goal of pebbling a set of vertices, by which we mean find a play
of the pebble game such that for each vertex in our set, there is some point in time during which we have a
pebble on that vertex. So, we don’t need to have pebbles on our entire set at once - it is fine to pebble one
or a few at a time.

Definition 3.4. Here is some slightly confusing notation: we will say that a vertex has been pebbled
if there was a pebble on that vertex at some point in the past. We distinguish this from the situation
when a vertex currently has a pebble.

In order to translate between our original version of the game and the conditions under which our proof
works, we note that

Proposition 3.5. If it takes a minimum of k pebbles to pebble a set A, then there must be some a ∈ A
such that it takes at least k pebbles to win our pebble game with a as the sink.

Proof. This is quite a simple proof by contradiction; if for every a ∈ A we could win the pebble game with
strictly less than k pebbles, then we could pebble A with less than k pebbles simply by pebbling each vertex
one at a time.

Thus, to prove our v/ log v lower bound, it is enough to show that there is some constant c′ such that for
every Gn, there is some subset of the vertices that take c′2n pebbles to pebble.

To do so, we will use the fact that many subsets of Gn are superconcentrators. A quick exercise to think
about is:

Exercise 3.6. Show that for n > 8, Gn is not a superconcentrator. That is, find some subset of k
source nodes of Gn and some subset of k sink nodes of Gn such that we cannot find k node-disjoint paths
between the source and sink nodes.

However, there are many superconcentrator subsets of Gn. For all of these, the proof that they are super-
concentrators follows directly from the fact that each Sn is a superconcentrator, but since there are so many
such subsets, we will just show two examples, and leave the rest as an exercise.

Example 3.7. For any Gn, the following subgraph is a superconcentrator:

For any subset of k entry vertices and k exit vertices, we can see that there are k exit vertices of S
(1)
2n−1 that

have edges directly to the k exit vertices, by the structure of G
(1)
n−1. Then, there are k node-disjoint paths

from the entry vertices to the k exit vertices of S
(1)
2n−1 by the fact that this part is a superconcentrator,

so we are done.
Then, the following subgraph is also a superconcentrator:

8



CS 254b Aditi Talati June 6, 2022

We just showed that the first part is a superconcentrator, and since the second part is the same thing
but reversed, it is also a superconcentrator. Then, for any set A of k entry vertices and B k exit vertices,

we can pick an arbritrary set C of k exit vertices of G
(1)
n−1. Then, we know that since the first part is a

superconcentrator, there are k node-disjoint paths from A to C. Then, there are direct edges from C to

a corresponding set C ′ of entry vertices of G
(2)
n−1, and since the second part is a superconcentrator, there

are k node-disjoint paths from C ′ to B, and we are done.

Exercise 3.8. List all the subgraphs of Gn, built out of the blocks E1, E2, S
(1)
2n−1 , G

(1)
n−1, G

(2)
n−1, S

(2)
2n−1 ,

A1, and A2, which are superconcentrators.

For the rest of this section, we will claim without proof that various subgraphs of Gn are superconcentrators,
as they become helpful to us.

Ok, but why is this helpful? We said before that we like superconcentrators because it seems like the number
of distinct nodes we need in order to win the pebble game should be decently high, since we can find so
many node-disjoint paths. We will formalize this idea now.

Lemma 3.9. If we have an n superconcentrator with j < n pebbles on some j vertices, and A is a
subset of at least j + 1 exit nodes, then there are at least n− j entry nodes with pebble-free paths
to A.

Proof. We can prove this by contradiction. Assume there aren’t at least n− j entry nodes with pebble-
free paths to A; that is, we can find j + 1 entry nodes such that none of them have a pebble free path
to A. But since we are in a superconcentrator, we know that we can find j +1 node-disjoint paths from
these entry nodes to A. Since there are only j pebbles, we know at least one of these paths must be
pebble-free, which contradicts our assumption. Thus, there are at most j entry nodes with no pebble-free
paths to A, which means there are at least n− j entry nodes with pebble-free paths to A.

This lemma will be crucial in proving our final result, which we are now ready to approach.

Theorem 3.10 (Paul-Tarjan-Celoni [PTC76]). For every n ≥ 8, we can find a sink node such that it
takes c′2n pebbles to win the pebble game on Gn, where c′ = 2−8.

As in most of the proofs in this paper, we will prove this by induction. But we will need a much stronger
inductive assumption to be able to do so, so instead we will prove the following statement, defining αn to
be 2n−8:

Theorem 3.11. For every graph Gn, in order to pebble any set A of at least 14αn exit nodes, if we
start with pebbles on at most 3αn nodes, then we can find an interval of time during which we pebble
34αn entry nodes and, for the entire interval, we have at least αn nodes on the graph.

That is, we look at every possible strategy that starts with these 3αn pebbles and pebbles all 14αn sink
nodes. We will consider each strategy as a series of timesteps [0, t], where at each timestep we either place a
pebble on a node or remove a pebble from a node. Then, we will show that we can find some time interval
[t1, t2] ⊆ [0, t] such that for the entire time interval, we have at least αn nodes on the graph, and during the
time interval, we pebble some 34αn entry nodes (in any order, and not necessarily at the same time).

Proof. The rest of this paper will be dedicated to proving this theorem.

We start with the base case of when n = 8. In that case, we are working directly with a superconcencentra-
tor, and we want to show that if we start with 3 pebbles and want to pebble some set A of 14 exit nodes,
then there must be an interval of time during which we pebble at least 34 entry nodes and there is at least

9



CS 254b Aditi Talati June 6, 2022

one pebble on the graph for the entirety of this interval. But then, consider some subset A′ that consists
of 4 exit nodes from A. Since G8 is a 256-superconcentrator, we can apply Lemma 3.9 with j = 3 to see
that there must be at least 253 entry nodes with pebble-free paths to A′. But by the pigeonhole principle,
that means there must be some a ∈ A′ with at least 64 > 34 entry nodes with pebble-free paths to a. We
know that in order to pebble a, we must first pebble these 34 entry nodes. So if we let t2 be the time at
which we pebble a and t1 be the last time we start pebbling these 34 entry nodes before that, then we can
see that [t1, t2] must be an interval of time during which we pebble at least 34 entry nodes and always have
at least one pebble on the graph (If we take all pebbles off the graph, we have essentially reset the state of
the game, and must pebble all the entry nodes again to pebble a - this contradicts the fact that we chose t1
to be the last time we pebble the entry nodes before we pebble a.) Thus, Theorem 3.11 holds for the base case.

The inductive case is slightly more complicated, and we end up having to do a bit of casework. We will show
that each strategy to pebble a graph Gn+1 falls into one of four options, and then show that for each of the
options, our inductive hypothesis holds.

As a reminder, we want to show that if we want to pebble a set A of at least 14αn+1 = 28αn nodes, and
we start with pebbles on 3an+1 = 6an nodes, then we can find an interval of time during which we pebble
34αn+1 = 68αn entry nodes and have 2αn nodes on the graph the entire time.

Case 1: There is a time interval [t1, t2] such that for the entire interval, there are at least 3αn

pebbles on Gn+1 and during the interval, we pebble at least 7αn entry nodes of G
(1)
n .

Let A be the set of these 7αn entry nodes of G
(1)
n . To prove the inductive hypothesis for this case, we note that

A is also a set of exit nodes of S
(1)
2n . We want to apply Lemma 3.9 to the following two superconcentrators:

But in order to apply this lemma, we need an upper bound on how many pebbles are on this graph to start
out with. To get this upper bound, we simply extend our interval a bit at the beginning. Specifically, let
t0 be the last time before t1 during which there at most 6αn pebbles on the graph. That is, if t0 < t1 − 1,
then in the interval [t0 + 1, t1 − 1], there are always at least 6αn + 1 pebbles on the graph. We can see that
whether or not t0 < t1 − 1, there are always at least 3αn pebbles at time t0 + 1, so there must be at least
3αn − 1 pebbles at time t0. Thus, in the interval [t0, t2] there are always at least 3αn pebbles on the graph,
and we start with at most 6αn pebbles.

10



CS 254b Aditi Talati June 6, 2022

Now, we can apply Lemma 3.9 to the above two superconcentrators, with j = 6αn. This tells us that there
are 2n − 6αn = 250αn nodes in E1, and another 250αn nodes in E2, with pebble-free paths to A at time t0.
Because all these nodes must get pebbled before A can get pebbled, we have that these 500αn nodes must
get pebbled during the time interval [t0, t2].

Thus, we have found a time interval during which there are 3αn − 1 > αn+1 pebbles on the graph the entire
time, and during which 500αn > 34αn+1 entry nodes of Gn+1 get pebbled. So our theorem holds for this case.

Case 2: There is a time interval [t1, t2] such that for the entire interval, there are at least 3αn

pebbles on Gn+1 and during the interval, we pebble at least 7αn entry nodes of G
(2)
n .

This is essentially the same as Case 1, except we are working with the entry nodes of G
(2)
n instead of the entry

nodes of G
(1)
n . That is, we again consider the interval [t0, t2], where t0 is the last time before t1 when there

are at most 6αn pebbles on the graph. Then, we apply Lemma 3.9 to the following two superconcentrators:

This lemma tells us that there are 250αn nodes of E1 and 250αn nodes of E2 that get pebbled during [t0, t2],
and since, as before, there are always at least 3αn − 1 pebbles on the graph during this interval, we have
found a time interval that satisfies our theorem for this case.

Case 3: There is a time interval [t1, t2] such that for the entire interval, there are at least 3αn

pebbles on Gn+1 and during the interval, we pebble at least 14αn exit nodes of Gn+1.

This is again very similar to the previous two cases. First, we note that by the pigeonhole principle, there is
some i such that we are pebbling at least 7αn nodes of Ai. Then, we pick at time t0 as before, so that there
at most 6αn pebbles on the graph at time t0 and during [t0, t2] there are always at least 3αn − 1 pebbles on
the graph during this time interval. Moreover, applying Lemma 3.9 to the following two superconcentrators

tells us that we pebble 500αn entry nodes of Gn+1 during this time, so our theorem also holds for this case.

Case 4: None of the first three cases hold.

(You may have noticed that we haven’t actually used our inductive hypothesis yet - this is the only case that
requires the inductive hypothesis.)

As a reminder, we are trying to pebble some subset of the exit nodes on the following graph:

11



CS 254b Aditi Talati June 6, 2022

Let [0, t] be the time interval during which we start with pebbles on at most 3αn+1 nodes and end having
pebbled 14αn+1 exit nodes.

Then, let [0, t1] be the interval during which the first 14αn exit nodes are pebbled. Since we are not in Case
3, there must be some time t2 ∈ [0, t1] such that there are less than 3αn pebbles on the graph.

Then, we note that since there are 14αn exit nodes left to be pebbled after t1, there must be some Ai such
that we pebble 7αn nodes in Ai in the interval [t1, t], by the pigeonhole principle. Applying Lemma 3.9 to
the following superconcentrator, with j = 3αn:

we get that there are 2n − 3αn = 253αn entry nodes of S
(2)
2n with pebble-free paths to these 7αn exit nodes;

each of these must be pebbled in the time interval [t1, t].

Then, we note that in [t1, t] we pebble 253αn exit nodes of G
(2)
n and we start with less than 3αn pebbles on

the graph. Thus, we can apply the inductive assumption to G
(2)
n to see that there must be some time

interval [t2, t3] ⊆ [t1, t] such that there are always at least αn pebbles on G
(2)
n and at least 34αn entry nodes

of G
(2)
n are pebbled.

Let [t2, t4] be the time interval during which the first 7αn of these entry nodes are pebbled. Since we are not
in Case 2, we can see that there must be some t5 ∈ [t2, t4] such that there are less than 3αn pebbles on the
graph at time t5.

Then, during [t5, t3], the remaining 27αn entry nodes of of G
(2)
n are pebbled, so during [t5, t3] we pebble 27αn

exit nodes of G
(1)
n and we start with less than 3αn pebbles on the graph. Thus, the inductive assumption

tells us there is some time interval [t6, t7] such that there are always at least αn pebbles on G
(1)
n and at least

34αn entry nodes of G
(1)
n .

Note that since there are αn pebbles on G
(1)
n and αn pebbles on G

(2)
n , we are now within a time interval

where there are always at least αn+1 pebbles on the graph.

Then, using an analogous argument from before, since we are not in Case 1, there must be a time t8 ∈ [t6, t7]
such that at time t8 there are less than 3αn pebbles on the graph, and within the interval [t8, t7], we must

pebble 27αn entry nodes of G
(1)
n .

Then, applying Lemma 3.9 to the following superconcentrator:

12



CS 254b Aditi Talati June 6, 2022

with j = 3αn tells us that there are at least 2n − 3αn = 253αn vertices in E1 that have pebble-free paths to

these 27αn exit nodes of S
(1)
2n .

These must all get pebbled during this interval in order for the exit nodes to get pebbled, so we have found a
time interval where there are always at least αn+1 nodes with pebbles on them, and during which we pebble
253αn > 34αn+1 entry nodes, so our inductive hypothesis holds for this case as well.

Thus, in any of the four cases, our inductive hypothesis holds, and by induction we can say this theorem is
true for all our graphs Gn.

Moreover, by taking Theorem 3.11 in combination with Proposition 3.5 shows that Theorem 3.10 holds, so
we have proved our v/ log v lower bound!

4 Conclusion
The pebble game is a weird and important way for us to learn about lower bounds for space complexity of
algorithms, especially in the tradeoff between space and time complexity. However, it is also interesting in
its own right, because exploring properties of the pebble game allows us to further develop and understand
strange and interesting graphs. I hope you found our little journey to build one such strange and interesting
graph as fun as I did!

References

[HPV77] John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space. J. ACM, 24(2):332–337,
apr 1977.

[PTC76] Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space bounds for a game on graphs.
In Proceedings of the Eighth Annual ACM Symposium on Theory of Computing, STOC ’76, page
149–160, New York, NY, USA, 1976. Association for Computing Machinery.

[SP98] Uwe Schoning and Randall Pruim. Gems of Theoretical Computer Science. Springer-Verlag, 1998.

13


	Introduction and Background
	Superconcentrators
	Super-Duper Concentrators
	Conclusion

